在本次作業中,你將使用LSTMImplementation model which generates the music.You can listen at the end of the operation of their own creation music.
你將學習:
from __future__ import print_function
import IPython
import sys
from music21 import *
import numpy as np
from grammar import *
from qa import *
from preprocess import *
from music_utils import *
from data_utils import *
from keras.models import load_model, Model
from keras.layers import Dense, Activation, Dropout, Input, LSTM, Reshape, Lambda, RepeatVector
from keras.initializers import glorot_uniform
from keras.utils import to_categorical
from keras.optimizers import Adam
from keras import backend as K
Using TensorFlow backend.
You to the special composing a jazz music for your friend's birthday.但是,You don't know any instrument or music works.幸運的是,You know deep learning and can be usedLSTMNetwork to try to solve this problem.
You will be training a network,To show the style of work to generate novel small jazz songs.
You will be training algorithm in jazz music corpus.Run the following cell to audition training focused audio clips:
IPython.display.Audio('./data/30s_seq.mp3')
由於CSDNCan't show the music,Blogger would not be in this show.
We have music data preprocessing,Based on the music“value
”Presents the music data.你可以將每個“值”As a note,Including the duration of a tone and a.例如,If you press the specific piano keys0.5秒鐘,Are you just played a note.在音樂理論中,“值”In fact is much more complex than that.具體來說,It also captures the information needed to play multiple notes at the same time.例如,When playing music works,You can press the two piano keys at the same time(Play multiple notes at the same time will produce the so-called“和弦”).But we don't need to talk about music theory too much detail.For the purpose of this assignment,你需要知道的是,We will get the value of the data set,並將學習RNNSequence model to generate the value.
我們的音樂生成系統將使用78個唯一值.Run the following code to load the music data and its pretreatment for value.這可能需要幾分鐘.
X, Y, n_values, indices_values = load_music_utils()
print('shape of X:', X.shape)
print('number of training examples:', X.shape[0])
print('Tx (length of sequence):', X.shape[1])
print('total # of unique values:', n_values)
print('Shape of Y:', Y.shape)
shape of X: (60, 30, 78)
number of training examples: 60
Tx (length of sequence): 30
total # of unique values: 78
Shape of Y: (30, 60, 78)
You have just loaded the following:
X
:This is dimension for ( m , T x , 78 ) (m,T_x,78) (m,Tx,78)的數組.我們有 m m m個訓練示例,Each training sample is T x = 30 T_x=30 Tx=30The value of music.在每個時間步,輸入都是78One of the possible values for different,表示為one-hot向量.因此,例如,X[i,t,:]
是一個one-hot向量,表示在時間t處第iThe value of the sample.Y
:本質上與X
相同,But the left(過去)Move a step.Similar to the dinosaur homework,We use the previous value to predict the next network interested in,因此,給定 x * 1 * , … , x * t * x^{\langle 1\rangle}, \ldots, x^{\langle t \rangle} x*1*,…,x*t*時,We will sequence model of trying to predict y * t * y^{\langle t \rangle} y*t*,然而,"Y"The data be reordered for ( T y , m , 78 ) (T_y,m,78) (Ty,m,78)的維度,其中 T y = T x T_y=T_x Ty=Tx,To facilitate after input toLSTM.n_values
:The number of the data set different values.即78.indices_values
:python字典,映射為0-77The value of music.This is the model we will use the structure.This with you on a laptop dinosaur models used in the similar,The difference is that you will useKeras實現它.架構如下:
We will be in longer music pieces randomly30A fragment to train model of value.So don't bother to set the first input x * 1 * = 0 ⃗ x^{\langle 1 \rangle} = \vec{0} x*1*=0,Because now most of the code segment can use it to represent the dinosaur names at the beginning of the.Audio started in the period of the middle of the music.We will each set for the same length T x = 30 T_x = 30 Tx=30,Facilitates the vectorization.
在這一部分中,You will build a music learning and training model.為此,You will need to build a model,The model adopts the dimensions as ( m , T x , 78 ) (m,T_x,78) (m,Tx,78)的X和維度為 ( T y , m , 78 ) (T_y,m,78) (Ty,m,78)的Y.我們將使用具有64維隱藏狀態的LSTM,設置n_a = 64
.
n_a = 64
This is to create with multiple input and output ofKeras模型的方法.如果你要構建RNN,即使在測試階段,整個輸入序列 x * 1 * , x * 2 * , … , x * T x * x^{\langle 1 \rangle}, x^{\langle 2 \rangle}, \ldots, x^{\langle T_x \rangle} x*1*,x*2*,…,x*Tx*Are given in advance.例如,如果輸入是單詞,And the output is the label,則KerasHas a simple built-in functions to build the model.但是,For sequence generation,We do not know in advance when the test x * t * x^{\langle t\rangle} x*t*的所有值;相反,我們使用 x * t * = y * t − 1 * x^{\langle t\rangle} = y^{\langle t-1 \rangle} x*t*=y*t−1*一次生成一個.因此,The code will be even more complex,And you will need to implement their ownforLoop iteration to different time step.
函數djmodel()
將使用for循環調用LSTM層 T x T_x Tx次,並且所有 T x T_x TxCopy has the same weight.That should not be to initialize the weights every time, T x T_x TxStep should be Shared weight.在KerasThe weight of implementation can be Shared in the network layer of the key steps is:
We have you need the layer object defined as a global variable.Please run a cell to create them.查看KerasDocument to make sure you know what these layers is:Reshape(), LSTM(), Dense().
reshapor = Reshape((1, 78)) # Used in Step 2.B of djmodel(), below
LSTM_cell = LSTM(n_a, return_state = True) # Used in Step 2.C
densor = Dense(n_values, activation='softmax') # Used in Step 2.D
現在,reshapor
, LSTM_cell
和 densor
Are layer object,You can use them to achievedjmodel()
.In order to spread through the layerKeras張量對象X,使用layer_object(X)
(If you need more input,則使用layer_object([X,Y])
).例如,reshapor(X)
Will through the above definition ofReshape((1,78))
層傳播X.
練習:實現djmodel()
,你需要執行2個步驟:
x = Lambda(lambda x: X[:,t,:])(X)
查看KerasDocumentation to understand its role.它正在創建一個"臨時"或"未命名"函數(lambdaFunction is the function),To extract the appropriateone-hot向量,And the function as aKeras的Layer
對象應用於X.
+ 將x重塑為(1,78).你可能會發現`reshapor()`層(在下面定義)很有用.
+ 運行x通過LSTM_cell的一個步驟.Remember to use the previous step hide status$a$和單元狀態$c$初始化`LSTM_cell`.使用以下格式:
a, _, c = LSTM_cell(input_x, initial_state=[Previously hidden state, Before the unit state])
+ 使用"densor"通過dense+softmax層傳播LSTM輸出的激活值.
+ Add predictive value to the"output"列表中
def djmodel(Tx, n_a, n_values):
""" 實現這個模型 參數: Tx -- 語料庫的長度 n_a -- 激活值的數量 n_values -- 音樂數據中唯一數據的數量 返回: model -- Keras模型實體 """
# 定義輸入數據的維度
X = Input((Tx, n_values))
# 定義a0, 初始化隱藏狀態
a0 = Input(shape=(n_a,),name="a0")
c0 = Input(shape=(n_a,),name="c0")
a = a0
c = c0
# 第一步:創建一個空的outputs列表來保存LSTM的所有時間步的輸出.
outputs = []
# 第二步:循環
for t in range(Tx):
## 2.A:從X中選擇第“t”個時間步向量
x = Lambda(lambda x:X[:, t, :])(X)
## 2.B:使用reshapor來對x進行重構為(1, n_values)
x = reshapor(x)
## 2.C:單步傳播
a, _, c = LSTM_cell(x, initial_state=[a, c])
## 2.D:使用densor()應用於LSTM_Cell的隱藏狀態輸出
out = densor(a)
## 2.E:把預測值添加到"outputs"列表中
outputs.append(out)
# 第三步:創建模型實體
model = Model(inputs=[X, a0, c0], outputs=outputs)
return model
Run the following cell to define the model.我們將使用Tx=30
, n_a=64
(LSTMThe dimensions of the activation)和n_values=78
.The unit may take a few seconds to run.
model = djmodel(Tx = 30 , n_a = 64, n_values = 78)
WARNING:tensorflow:From d:\vr\virtual_environment\lib\site-packages\tensorflow_core\python\ops\resource_variable_ops.py:1630: calling BaseResourceVariable.__init__ (from tensorflow.python.ops.resource_variable_ops) with constraint is deprecated and will be removed in a future version.
Instructions for updating:
If using Keras pass *_constraint arguments to layers.
現在,You need to compile model for training.我們將使用AdamThe optimizer entropy and cross entropy loss.
opt = Adam(lr=0.01, beta_1=0.9, beta_2=0.999, decay=0.01)
model.compile(optimizer=opt, loss='categorical_crossentropy', metrics=['accuracy'])
最後,將LSTM的初始狀態a0
和c0
初始化為零.
m = 60
a0 = np.zeros((m, n_a))
c0 = np.zeros((m, n_a))
Now let's fitting model!Because of the loss function want to each time step a list item format provides“Y”,因此我們需要將“Y”轉換為列表.list(Y)
是一個包含30個項的列表,Each list item dimensions are(60,78).讓我們訓練100個epoch.這將需要幾分鐘.
model.fit([X, a0, c0], list(Y), epochs=100)
WARNING:tensorflow:From d:\vr\virtual_environment\lib\site-packages\keras\backend\tensorflow_backend.py:422: The name tf.global_variables is deprecated. Please use tf.compat.v1.global_variables instead.
Epoch 1/100
60/60 [==============================] - 7s 119ms/step - loss: 125.8104 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.0000e+00 - dense_1_accuracy_1: 0.0500 - dense_1_accuracy_2: 0.0333 - dense_1_accuracy_3: 0.0000e+00 - dense_1_accuracy_4: 0.0500 - dense_1_accuracy_5: 0.0500 - dense_1_accuracy_6: 0.0667 - dense_1_accuracy_7: 0.0500 - dense_1_accuracy_8: 0.1167 - dense_1_accuracy_9: 0.1167 - dense_1_accuracy_10: 0.0500 - dense_1_accuracy_11: 0.0500 - dense_1_accuracy_12: 0.0667 - dense_1_accuracy_13: 0.1000 - dense_1_accuracy_14: 0.0500 - dense_1_accuracy_15: 0.0833 - dense_1_accuracy_16: 0.0667 - dense_1_accuracy_17: 0.0000e+00 - dense_1_accuracy_18: 0.0833 - dense_1_accuracy_19: 0.0167 - dense_1_accuracy_20: 0.0500 - dense_1_accuracy_21: 0.0667 - dense_1_accuracy_22: 0.0000e+00 - dense_1_accuracy_23: 0.0667 - dense_1_accuracy_24: 0.0167 - dense_1_accuracy_25: 0.0667 - dense_1_accuracy_26: 0.0167 - dense_1_accuracy_27: 0.0500 - dense_1_accuracy_28: 0.0667 - dense_1_accuracy_29: 0.0000e+00
Epoch 2/100
60/60 [==============================] - 0s 1ms/step - loss: 121.4338 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.1333 - dense_1_accuracy_2: 0.1667 - dense_1_accuracy_3: 0.1333 - dense_1_accuracy_4: 0.1167 - dense_1_accuracy_5: 0.1000 - dense_1_accuracy_6: 0.1000 - dense_1_accuracy_7: 0.0667 - dense_1_accuracy_8: 0.1500 - dense_1_accuracy_9: 0.1000 - dense_1_accuracy_10: 0.0667 - dense_1_accuracy_11: 0.0167 - dense_1_accuracy_12: 0.0833 - dense_1_accuracy_13: 0.0833 - dense_1_accuracy_14: 0.0500 - dense_1_accuracy_15: 0.0833 - dense_1_accuracy_16: 0.1000 - dense_1_accuracy_17: 0.0167 - dense_1_accuracy_18: 0.1000 - dense_1_accuracy_19: 0.0667 - dense_1_accuracy_20: 0.0667 - dense_1_accuracy_21: 0.0500 - dense_1_accuracy_22: 0.0833 - dense_1_accuracy_23: 0.0833 - dense_1_accuracy_24: 0.0167 - dense_1_accuracy_25: 0.1167 - dense_1_accuracy_26: 0.0500 - dense_1_accuracy_27: 0.0667 - dense_1_accuracy_28: 0.0333 - dense_1_accuracy_29: 0.0000e+00
Epoch 3/100
60/60 [==============================] - 0s 1ms/step - loss: 116.7514 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.1333 - dense_1_accuracy_2: 0.1500 - dense_1_accuracy_3: 0.1167 - dense_1_accuracy_4: 0.0833 - dense_1_accuracy_5: 0.0667 - dense_1_accuracy_6: 0.0833 - dense_1_accuracy_7: 0.0667 - dense_1_accuracy_8: 0.1167 - dense_1_accuracy_9: 0.1000 - dense_1_accuracy_10: 0.0667 - dense_1_accuracy_11: 0.0167 - dense_1_accuracy_12: 0.0833 - dense_1_accuracy_13: 0.0833 - dense_1_accuracy_14: 0.0500 - dense_1_accuracy_15: 0.0833 - dense_1_accuracy_16: 0.1000 - dense_1_accuracy_17: 0.0167 - dense_1_accuracy_18: 0.1000 - dense_1_accuracy_19: 0.0667 - dense_1_accuracy_20: 0.0667 - dense_1_accuracy_21: 0.0500 - dense_1_accuracy_22: 0.0833 - dense_1_accuracy_23: 0.0833 - dense_1_accuracy_24: 0.0167 - dense_1_accuracy_25: 0.1167 - dense_1_accuracy_26: 0.0500 - dense_1_accuracy_27: 0.0667 - dense_1_accuracy_28: 0.0333 - dense_1_accuracy_29: 0.0000e+00
Epoch 4/100
60/60 [==============================] - 0s 1ms/step - loss: 112.9043 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.0833 - dense_1_accuracy_1: 0.1667 - dense_1_accuracy_2: 0.2000 - dense_1_accuracy_3: 0.1833 - dense_1_accuracy_4: 0.1667 - dense_1_accuracy_5: 0.1167 - dense_1_accuracy_6: 0.1167 - dense_1_accuracy_7: 0.1833 - dense_1_accuracy_8: 0.1167 - dense_1_accuracy_9: 0.1167 - dense_1_accuracy_10: 0.1167 - dense_1_accuracy_11: 0.1000 - dense_1_accuracy_12: 0.0833 - dense_1_accuracy_13: 0.0833 - dense_1_accuracy_14: 0.0667 - dense_1_accuracy_15: 0.1000 - dense_1_accuracy_16: 0.1333 - dense_1_accuracy_17: 0.0833 - dense_1_accuracy_18: 0.0500 - dense_1_accuracy_19: 0.1000 - dense_1_accuracy_20: 0.0833 - dense_1_accuracy_21: 0.0500 - dense_1_accuracy_22: 0.0333 - dense_1_accuracy_23: 0.0167 - dense_1_accuracy_24: 0.1167 - dense_1_accuracy_25: 0.1500 - dense_1_accuracy_26: 0.0500 - dense_1_accuracy_27: 0.1000 - dense_1_accuracy_28: 0.1167 - dense_1_accuracy_29: 0.0000e+00
Epoch 5/100
60/60 [==============================] - 0s 1ms/step - loss: 110.5019 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.0667 - dense_1_accuracy_1: 0.1000 - dense_1_accuracy_2: 0.1500 - dense_1_accuracy_3: 0.2167 - dense_1_accuracy_4: 0.2333 - dense_1_accuracy_5: 0.1167 - dense_1_accuracy_6: 0.1000 - dense_1_accuracy_7: 0.2333 - dense_1_accuracy_8: 0.0500 - dense_1_accuracy_9: 0.0333 - dense_1_accuracy_10: 0.1000 - dense_1_accuracy_11: 0.1167 - dense_1_accuracy_12: 0.1167 - dense_1_accuracy_13: 0.1500 - dense_1_accuracy_14: 0.1000 - dense_1_accuracy_15: 0.1000 - dense_1_accuracy_16: 0.1333 - dense_1_accuracy_17: 0.1500 - dense_1_accuracy_18: 0.1000 - dense_1_accuracy_19: 0.0667 - dense_1_accuracy_20: 0.1000 - dense_1_accuracy_21: 0.1000 - dense_1_accuracy_22: 0.0667 - dense_1_accuracy_23: 0.0500 - dense_1_accuracy_24: 0.0833 - dense_1_accuracy_25: 0.1500 - dense_1_accuracy_26: 0.0667 - dense_1_accuracy_27: 0.1500 - dense_1_accuracy_28: 0.1167 - dense_1_accuracy_29: 0.0000e+00
Epoch 6/100
60/60 [==============================] - 0s 1ms/step - loss: 107.8270 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.0667 - dense_1_accuracy_1: 0.0667 - dense_1_accuracy_2: 0.1500 - dense_1_accuracy_3: 0.2000 - dense_1_accuracy_4: 0.2167 - dense_1_accuracy_5: 0.1000 - dense_1_accuracy_6: 0.1000 - dense_1_accuracy_7: 0.2167 - dense_1_accuracy_8: 0.0667 - dense_1_accuracy_9: 0.0333 - dense_1_accuracy_10: 0.1000 - dense_1_accuracy_11: 0.1167 - dense_1_accuracy_12: 0.1167 - dense_1_accuracy_13: 0.1333 - dense_1_accuracy_14: 0.1000 - dense_1_accuracy_15: 0.1000 - dense_1_accuracy_16: 0.1000 - dense_1_accuracy_17: 0.1333 - dense_1_accuracy_18: 0.0833 - dense_1_accuracy_19: 0.0667 - dense_1_accuracy_20: 0.0833 - dense_1_accuracy_21: 0.1000 - dense_1_accuracy_22: 0.0500 - dense_1_accuracy_23: 0.1000 - dense_1_accuracy_24: 0.1000 - dense_1_accuracy_25: 0.1667 - dense_1_accuracy_26: 0.1000 - dense_1_accuracy_27: 0.1500 - dense_1_accuracy_28: 0.1667 - dense_1_accuracy_29: 0.0000e+00
Epoch 7/100
60/60 [==============================] - 0s 1ms/step - loss: 104.8190 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.0667 - dense_1_accuracy_1: 0.0833 - dense_1_accuracy_2: 0.1667 - dense_1_accuracy_3: 0.2167 - dense_1_accuracy_4: 0.2167 - dense_1_accuracy_5: 0.1333 - dense_1_accuracy_6: 0.1167 - dense_1_accuracy_7: 0.2333 - dense_1_accuracy_8: 0.1000 - dense_1_accuracy_9: 0.0667 - dense_1_accuracy_10: 0.1667 - dense_1_accuracy_11: 0.1167 - dense_1_accuracy_12: 0.1167 - dense_1_accuracy_13: 0.2000 - dense_1_accuracy_14: 0.1167 - dense_1_accuracy_15: 0.1333 - dense_1_accuracy_16: 0.1500 - dense_1_accuracy_17: 0.2000 - dense_1_accuracy_18: 0.1500 - dense_1_accuracy_19: 0.1333 - dense_1_accuracy_20: 0.1333 - dense_1_accuracy_21: 0.1667 - dense_1_accuracy_22: 0.1000 - dense_1_accuracy_23: 0.1500 - dense_1_accuracy_24: 0.1000 - dense_1_accuracy_25: 0.2000 - dense_1_accuracy_26: 0.1333 - dense_1_accuracy_27: 0.1667 - dense_1_accuracy_28: 0.1667 - dense_1_accuracy_29: 0.0000e+00
Epoch 8/100
60/60 [==============================] - 0s 1ms/step - loss: 101.2496 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.0667 - dense_1_accuracy_1: 0.0667 - dense_1_accuracy_2: 0.1667 - dense_1_accuracy_3: 0.2167 - dense_1_accuracy_4: 0.2167 - dense_1_accuracy_5: 0.1167 - dense_1_accuracy_6: 0.1333 - dense_1_accuracy_7: 0.2667 - dense_1_accuracy_8: 0.1333 - dense_1_accuracy_9: 0.1167 - dense_1_accuracy_10: 0.1833 - dense_1_accuracy_11: 0.0833 - dense_1_accuracy_12: 0.2833 - dense_1_accuracy_13: 0.2833 - dense_1_accuracy_14: 0.1333 - dense_1_accuracy_15: 0.1667 - dense_1_accuracy_16: 0.2167 - dense_1_accuracy_17: 0.1667 - dense_1_accuracy_18: 0.1667 - dense_1_accuracy_19: 0.1667 - dense_1_accuracy_20: 0.1167 - dense_1_accuracy_21: 0.1000 - dense_1_accuracy_22: 0.1333 - dense_1_accuracy_23: 0.1833 - dense_1_accuracy_24: 0.1167 - dense_1_accuracy_25: 0.1000 - dense_1_accuracy_26: 0.1833 - dense_1_accuracy_27: 0.2500 - dense_1_accuracy_28: 0.1167 - dense_1_accuracy_29: 0.0000e+00
Epoch 9/100
60/60 [==============================] - 0s 1ms/step - loss: 97.0479 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.0667 - dense_1_accuracy_1: 0.1000 - dense_1_accuracy_2: 0.1833 - dense_1_accuracy_3: 0.2167 - dense_1_accuracy_4: 0.2167 - dense_1_accuracy_5: 0.1167 - dense_1_accuracy_6: 0.1167 - dense_1_accuracy_7: 0.2500 - dense_1_accuracy_8: 0.1167 - dense_1_accuracy_9: 0.1500 - dense_1_accuracy_10: 0.2000 - dense_1_accuracy_11: 0.1167 - dense_1_accuracy_12: 0.2333 - dense_1_accuracy_13: 0.2667 - dense_1_accuracy_14: 0.2167 - dense_1_accuracy_15: 0.1500 - dense_1_accuracy_16: 0.2333 - dense_1_accuracy_17: 0.1833 - dense_1_accuracy_18: 0.2333 - dense_1_accuracy_19: 0.1833 - dense_1_accuracy_20: 0.1500 - dense_1_accuracy_21: 0.1833 - dense_1_accuracy_22: 0.1667 - dense_1_accuracy_23: 0.2000 - dense_1_accuracy_24: 0.1667 - dense_1_accuracy_25: 0.2500 - dense_1_accuracy_26: 0.1833 - dense_1_accuracy_27: 0.3000 - dense_1_accuracy_28: 0.1167 - dense_1_accuracy_29: 0.0000e+00
Epoch 10/100
60/60 [==============================] - 0s 1ms/step - loss: 93.1729 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.0667 - dense_1_accuracy_1: 0.1167 - dense_1_accuracy_2: 0.1667 - dense_1_accuracy_3: 0.2000 - dense_1_accuracy_4: 0.2167 - dense_1_accuracy_5: 0.1500 - dense_1_accuracy_6: 0.1167 - dense_1_accuracy_7: 0.2333 - dense_1_accuracy_8: 0.1667 - dense_1_accuracy_9: 0.1500 - dense_1_accuracy_10: 0.2333 - dense_1_accuracy_11: 0.1500 - dense_1_accuracy_12: 0.2667 - dense_1_accuracy_13: 0.3500 - dense_1_accuracy_14: 0.2500 - dense_1_accuracy_15: 0.1667 - dense_1_accuracy_16: 0.2333 - dense_1_accuracy_17: 0.2000 - dense_1_accuracy_18: 0.2333 - dense_1_accuracy_19: 0.1833 - dense_1_accuracy_20: 0.1500 - dense_1_accuracy_21: 0.2500 - dense_1_accuracy_22: 0.1500 - dense_1_accuracy_23: 0.1833 - dense_1_accuracy_24: 0.1500 - dense_1_accuracy_25: 0.2500 - dense_1_accuracy_26: 0.1833 - dense_1_accuracy_27: 0.2500 - dense_1_accuracy_28: 0.1667 - dense_1_accuracy_29: 0.0000e+00
Epoch 11/100
60/60 [==============================] - 0s 1ms/step - loss: 88.8382 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.0667 - dense_1_accuracy_1: 0.1167 - dense_1_accuracy_2: 0.2000 - dense_1_accuracy_3: 0.1667 - dense_1_accuracy_4: 0.2167 - dense_1_accuracy_5: 0.1667 - dense_1_accuracy_6: 0.1500 - dense_1_accuracy_7: 0.2167 - dense_1_accuracy_8: 0.2000 - dense_1_accuracy_9: 0.1667 - dense_1_accuracy_10: 0.2167 - dense_1_accuracy_11: 0.1500 - dense_1_accuracy_12: 0.3167 - dense_1_accuracy_13: 0.3167 - dense_1_accuracy_14: 0.1833 - dense_1_accuracy_15: 0.1833 - dense_1_accuracy_16: 0.3000 - dense_1_accuracy_17: 0.1833 - dense_1_accuracy_18: 0.1667 - dense_1_accuracy_19: 0.2167 - dense_1_accuracy_20: 0.2333 - dense_1_accuracy_21: 0.2333 - dense_1_accuracy_22: 0.1833 - dense_1_accuracy_23: 0.2000 - dense_1_accuracy_24: 0.1333 - dense_1_accuracy_25: 0.2333 - dense_1_accuracy_26: 0.2167 - dense_1_accuracy_27: 0.2333 - dense_1_accuracy_28: 0.1333 - dense_1_accuracy_29: 0.0000e+00
Epoch 12/100
60/60 [==============================] - 0s 1ms/step - loss: 84.4568 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.0667 - dense_1_accuracy_1: 0.1167 - dense_1_accuracy_2: 0.2167 - dense_1_accuracy_3: 0.1667 - dense_1_accuracy_4: 0.2167 - dense_1_accuracy_5: 0.1833 - dense_1_accuracy_6: 0.1667 - dense_1_accuracy_7: 0.2833 - dense_1_accuracy_8: 0.2333 - dense_1_accuracy_9: 0.1667 - dense_1_accuracy_10: 0.2667 - dense_1_accuracy_11: 0.1500 - dense_1_accuracy_12: 0.3000 - dense_1_accuracy_13: 0.3500 - dense_1_accuracy_14: 0.2333 - dense_1_accuracy_15: 0.1833 - dense_1_accuracy_16: 0.3000 - dense_1_accuracy_17: 0.1833 - dense_1_accuracy_18: 0.2333 - dense_1_accuracy_19: 0.2167 - dense_1_accuracy_20: 0.2333 - dense_1_accuracy_21: 0.2833 - dense_1_accuracy_22: 0.2667 - dense_1_accuracy_23: 0.1833 - dense_1_accuracy_24: 0.1000 - dense_1_accuracy_25: 0.2667 - dense_1_accuracy_26: 0.2500 - dense_1_accuracy_27: 0.1833 - dense_1_accuracy_28: 0.1833 - dense_1_accuracy_29: 0.0000e+00
Epoch 13/100
60/60 [==============================] - 0s 2ms/step - loss: 80.3870 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.0667 - dense_1_accuracy_1: 0.1500 - dense_1_accuracy_2: 0.2167 - dense_1_accuracy_3: 0.2167 - dense_1_accuracy_4: 0.2333 - dense_1_accuracy_5: 0.1667 - dense_1_accuracy_6: 0.2167 - dense_1_accuracy_7: 0.3167 - dense_1_accuracy_8: 0.2667 - dense_1_accuracy_9: 0.2667 - dense_1_accuracy_10: 0.2833 - dense_1_accuracy_11: 0.2667 - dense_1_accuracy_12: 0.3833 - dense_1_accuracy_13: 0.3833 - dense_1_accuracy_14: 0.2500 - dense_1_accuracy_15: 0.2667 - dense_1_accuracy_16: 0.3333 - dense_1_accuracy_17: 0.2833 - dense_1_accuracy_18: 0.2833 - dense_1_accuracy_19: 0.2667 - dense_1_accuracy_20: 0.2667 - dense_1_accuracy_21: 0.2667 - dense_1_accuracy_22: 0.2833 - dense_1_accuracy_23: 0.2833 - dense_1_accuracy_24: 0.1667 - dense_1_accuracy_25: 0.3333 - dense_1_accuracy_26: 0.1667 - dense_1_accuracy_27: 0.2333 - dense_1_accuracy_28: 0.2333 - dense_1_accuracy_29: 0.0000e+00
Epoch 14/100
60/60 [==============================] - 0s 1ms/step - loss: 76.0954 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.1500 - dense_1_accuracy_2: 0.2167 - dense_1_accuracy_3: 0.2333 - dense_1_accuracy_4: 0.2667 - dense_1_accuracy_5: 0.1500 - dense_1_accuracy_6: 0.2500 - dense_1_accuracy_7: 0.3000 - dense_1_accuracy_8: 0.3333 - dense_1_accuracy_9: 0.3833 - dense_1_accuracy_10: 0.2833 - dense_1_accuracy_11: 0.3000 - dense_1_accuracy_12: 0.4500 - dense_1_accuracy_13: 0.4833 - dense_1_accuracy_14: 0.2833 - dense_1_accuracy_15: 0.3500 - dense_1_accuracy_16: 0.3500 - dense_1_accuracy_17: 0.3000 - dense_1_accuracy_18: 0.3667 - dense_1_accuracy_19: 0.3333 - dense_1_accuracy_20: 0.3000 - dense_1_accuracy_21: 0.3833 - dense_1_accuracy_22: 0.2833 - dense_1_accuracy_23: 0.3667 - dense_1_accuracy_24: 0.2167 - dense_1_accuracy_25: 0.3167 - dense_1_accuracy_26: 0.2833 - dense_1_accuracy_27: 0.3667 - dense_1_accuracy_28: 0.2833 - dense_1_accuracy_29: 0.0000e+00
Epoch 15/100
60/60 [==============================] - 0s 1ms/step - loss: 72.4746 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.1833 - dense_1_accuracy_2: 0.2500 - dense_1_accuracy_3: 0.2333 - dense_1_accuracy_4: 0.2833 - dense_1_accuracy_5: 0.2000 - dense_1_accuracy_6: 0.2500 - dense_1_accuracy_7: 0.3167 - dense_1_accuracy_8: 0.4500 - dense_1_accuracy_9: 0.4500 - dense_1_accuracy_10: 0.3500 - dense_1_accuracy_11: 0.3833 - dense_1_accuracy_12: 0.4000 - dense_1_accuracy_13: 0.4667 - dense_1_accuracy_14: 0.2833 - dense_1_accuracy_15: 0.3667 - dense_1_accuracy_16: 0.3833 - dense_1_accuracy_17: 0.4000 - dense_1_accuracy_18: 0.4000 - dense_1_accuracy_19: 0.3167 - dense_1_accuracy_20: 0.3167 - dense_1_accuracy_21: 0.5000 - dense_1_accuracy_22: 0.3833 - dense_1_accuracy_23: 0.4500 - dense_1_accuracy_24: 0.3333 - dense_1_accuracy_25: 0.3667 - dense_1_accuracy_26: 0.4000 - dense_1_accuracy_27: 0.3833 - dense_1_accuracy_28: 0.3833 - dense_1_accuracy_29: 0.0000e+00
Epoch 16/100
60/60 [==============================] - 0s 1ms/step - loss: 68.5501 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.1833 - dense_1_accuracy_2: 0.2500 - dense_1_accuracy_3: 0.2667 - dense_1_accuracy_4: 0.3000 - dense_1_accuracy_5: 0.3000 - dense_1_accuracy_6: 0.2833 - dense_1_accuracy_7: 0.3333 - dense_1_accuracy_8: 0.4000 - dense_1_accuracy_9: 0.4000 - dense_1_accuracy_10: 0.3667 - dense_1_accuracy_11: 0.4333 - dense_1_accuracy_12: 0.4500 - dense_1_accuracy_13: 0.5667 - dense_1_accuracy_14: 0.2833 - dense_1_accuracy_15: 0.3500 - dense_1_accuracy_16: 0.4167 - dense_1_accuracy_17: 0.4500 - dense_1_accuracy_18: 0.5167 - dense_1_accuracy_19: 0.4333 - dense_1_accuracy_20: 0.3667 - dense_1_accuracy_21: 0.4833 - dense_1_accuracy_22: 0.4167 - dense_1_accuracy_23: 0.3500 - dense_1_accuracy_24: 0.3000 - dense_1_accuracy_25: 0.4333 - dense_1_accuracy_26: 0.3667 - dense_1_accuracy_27: 0.3500 - dense_1_accuracy_28: 0.3333 - dense_1_accuracy_29: 0.0000e+00
Epoch 17/100
60/60 [==============================] - 0s 1ms/step - loss: 65.0331 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.1833 - dense_1_accuracy_2: 0.2833 - dense_1_accuracy_3: 0.2833 - dense_1_accuracy_4: 0.3333 - dense_1_accuracy_5: 0.3333 - dense_1_accuracy_6: 0.3333 - dense_1_accuracy_7: 0.3333 - dense_1_accuracy_8: 0.4833 - dense_1_accuracy_9: 0.4333 - dense_1_accuracy_10: 0.4500 - dense_1_accuracy_11: 0.4333 - dense_1_accuracy_12: 0.4667 - dense_1_accuracy_13: 0.5667 - dense_1_accuracy_14: 0.4000 - dense_1_accuracy_15: 0.4000 - dense_1_accuracy_16: 0.5000 - dense_1_accuracy_17: 0.5000 - dense_1_accuracy_18: 0.4833 - dense_1_accuracy_19: 0.4500 - dense_1_accuracy_20: 0.4333 - dense_1_accuracy_21: 0.6000 - dense_1_accuracy_22: 0.4500 - dense_1_accuracy_23: 0.4333 - dense_1_accuracy_24: 0.3167 - dense_1_accuracy_25: 0.4500 - dense_1_accuracy_26: 0.4500 - dense_1_accuracy_27: 0.4667 - dense_1_accuracy_28: 0.4000 - dense_1_accuracy_29: 0.0000e+00
Epoch 18/100
60/60 [==============================] - 0s 1ms/step - loss: 61.6549 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.2000 - dense_1_accuracy_2: 0.3167 - dense_1_accuracy_3: 0.3000 - dense_1_accuracy_4: 0.3500 - dense_1_accuracy_5: 0.3833 - dense_1_accuracy_6: 0.3833 - dense_1_accuracy_7: 0.4500 - dense_1_accuracy_8: 0.4167 - dense_1_accuracy_9: 0.4500 - dense_1_accuracy_10: 0.4833 - dense_1_accuracy_11: 0.4333 - dense_1_accuracy_12: 0.4333 - dense_1_accuracy_13: 0.6000 - dense_1_accuracy_14: 0.3833 - dense_1_accuracy_15: 0.4667 - dense_1_accuracy_16: 0.4333 - dense_1_accuracy_17: 0.5000 - dense_1_accuracy_18: 0.5500 - dense_1_accuracy_19: 0.4833 - dense_1_accuracy_20: 0.4333 - dense_1_accuracy_21: 0.7167 - dense_1_accuracy_22: 0.5333 - dense_1_accuracy_23: 0.4667 - dense_1_accuracy_24: 0.3667 - dense_1_accuracy_25: 0.5000 - dense_1_accuracy_26: 0.4500 - dense_1_accuracy_27: 0.5333 - dense_1_accuracy_28: 0.5000 - dense_1_accuracy_29: 0.0000e+00
Epoch 19/100
60/60 [==============================] - 0s 1ms/step - loss: 58.4755 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.2000 - dense_1_accuracy_2: 0.3500 - dense_1_accuracy_3: 0.3333 - dense_1_accuracy_4: 0.3333 - dense_1_accuracy_5: 0.4000 - dense_1_accuracy_6: 0.5000 - dense_1_accuracy_7: 0.5167 - dense_1_accuracy_8: 0.5333 - dense_1_accuracy_9: 0.5833 - dense_1_accuracy_10: 0.5000 - dense_1_accuracy_11: 0.5333 - dense_1_accuracy_12: 0.5333 - dense_1_accuracy_13: 0.5833 - dense_1_accuracy_14: 0.4000 - dense_1_accuracy_15: 0.4500 - dense_1_accuracy_16: 0.4667 - dense_1_accuracy_17: 0.5333 - dense_1_accuracy_18: 0.5500 - dense_1_accuracy_19: 0.5333 - dense_1_accuracy_20: 0.5333 - dense_1_accuracy_21: 0.6667 - dense_1_accuracy_22: 0.4667 - dense_1_accuracy_23: 0.5333 - dense_1_accuracy_24: 0.4167 - dense_1_accuracy_25: 0.6333 - dense_1_accuracy_26: 0.5667 - dense_1_accuracy_27: 0.5833 - dense_1_accuracy_28: 0.6500 - dense_1_accuracy_29: 0.0000e+00
Epoch 20/100
60/60 [==============================] - 0s 1ms/step - loss: 55.3904 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.2167 - dense_1_accuracy_2: 0.3500 - dense_1_accuracy_3: 0.3333 - dense_1_accuracy_4: 0.3333 - dense_1_accuracy_5: 0.4833 - dense_1_accuracy_6: 0.5500 - dense_1_accuracy_7: 0.5333 - dense_1_accuracy_8: 0.6667 - dense_1_accuracy_9: 0.6000 - dense_1_accuracy_10: 0.5667 - dense_1_accuracy_11: 0.5500 - dense_1_accuracy_12: 0.6500 - dense_1_accuracy_13: 0.6333 - dense_1_accuracy_14: 0.4833 - dense_1_accuracy_15: 0.4833 - dense_1_accuracy_16: 0.5333 - dense_1_accuracy_17: 0.6333 - dense_1_accuracy_18: 0.5500 - dense_1_accuracy_19: 0.5333 - dense_1_accuracy_20: 0.5667 - dense_1_accuracy_21: 0.6333 - dense_1_accuracy_22: 0.5833 - dense_1_accuracy_23: 0.4333 - dense_1_accuracy_24: 0.4833 - dense_1_accuracy_25: 0.6167 - dense_1_accuracy_26: 0.5333 - dense_1_accuracy_27: 0.6000 - dense_1_accuracy_28: 0.6167 - dense_1_accuracy_29: 0.0000e+00
Epoch 21/100
60/60 [==============================] - 0s 1ms/step - loss: 52.4564 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.2667 - dense_1_accuracy_2: 0.3667 - dense_1_accuracy_3: 0.3000 - dense_1_accuracy_4: 0.3500 - dense_1_accuracy_5: 0.5500 - dense_1_accuracy_6: 0.6167 - dense_1_accuracy_7: 0.5833 - dense_1_accuracy_8: 0.6833 - dense_1_accuracy_9: 0.6833 - dense_1_accuracy_10: 0.6167 - dense_1_accuracy_11: 0.5833 - dense_1_accuracy_12: 0.6833 - dense_1_accuracy_13: 0.6167 - dense_1_accuracy_14: 0.5000 - dense_1_accuracy_15: 0.5000 - dense_1_accuracy_16: 0.5333 - dense_1_accuracy_17: 0.6000 - dense_1_accuracy_18: 0.5667 - dense_1_accuracy_19: 0.5667 - dense_1_accuracy_20: 0.7167 - dense_1_accuracy_21: 0.6833 - dense_1_accuracy_22: 0.6500 - dense_1_accuracy_23: 0.5833 - dense_1_accuracy_24: 0.5500 - dense_1_accuracy_25: 0.7000 - dense_1_accuracy_26: 0.5833 - dense_1_accuracy_27: 0.6667 - dense_1_accuracy_28: 0.7000 - dense_1_accuracy_29: 0.0000e+00
Epoch 22/100
60/60 [==============================] - 0s 1ms/step - loss: 49.6620 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.2833 - dense_1_accuracy_2: 0.3667 - dense_1_accuracy_3: 0.3167 - dense_1_accuracy_4: 0.3667 - dense_1_accuracy_5: 0.6167 - dense_1_accuracy_6: 0.6333 - dense_1_accuracy_7: 0.6000 - dense_1_accuracy_8: 0.7167 - dense_1_accuracy_9: 0.6667 - dense_1_accuracy_10: 0.6167 - dense_1_accuracy_11: 0.6667 - dense_1_accuracy_12: 0.7167 - dense_1_accuracy_13: 0.6500 - dense_1_accuracy_14: 0.5500 - dense_1_accuracy_15: 0.6333 - dense_1_accuracy_16: 0.6500 - dense_1_accuracy_17: 0.6333 - dense_1_accuracy_18: 0.7000 - dense_1_accuracy_19: 0.6667 - dense_1_accuracy_20: 0.6833 - dense_1_accuracy_21: 0.7167 - dense_1_accuracy_22: 0.6500 - dense_1_accuracy_23: 0.6667 - dense_1_accuracy_24: 0.5667 - dense_1_accuracy_25: 0.7167 - dense_1_accuracy_26: 0.6500 - dense_1_accuracy_27: 0.6833 - dense_1_accuracy_28: 0.7333 - dense_1_accuracy_29: 0.0000e+00
Epoch 23/100
60/60 [==============================] - 0s 1ms/step - loss: 46.9174 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.3000 - dense_1_accuracy_2: 0.3667 - dense_1_accuracy_3: 0.3000 - dense_1_accuracy_4: 0.3833 - dense_1_accuracy_5: 0.5833 - dense_1_accuracy_6: 0.6500 - dense_1_accuracy_7: 0.6333 - dense_1_accuracy_8: 0.7333 - dense_1_accuracy_9: 0.7333 - dense_1_accuracy_10: 0.6667 - dense_1_accuracy_11: 0.7000 - dense_1_accuracy_12: 0.7667 - dense_1_accuracy_13: 0.6667 - dense_1_accuracy_14: 0.6000 - dense_1_accuracy_15: 0.6833 - dense_1_accuracy_16: 0.6667 - dense_1_accuracy_17: 0.7500 - dense_1_accuracy_18: 0.7167 - dense_1_accuracy_19: 0.6167 - dense_1_accuracy_20: 0.7000 - dense_1_accuracy_21: 0.7333 - dense_1_accuracy_22: 0.6500 - dense_1_accuracy_23: 0.7000 - dense_1_accuracy_24: 0.6000 - dense_1_accuracy_25: 0.7333 - dense_1_accuracy_26: 0.6500 - dense_1_accuracy_27: 0.7667 - dense_1_accuracy_28: 0.7333 - dense_1_accuracy_29: 0.0000e+00
Epoch 24/100
60/60 [==============================] - 0s 1ms/step - loss: 44.3451 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.3500 - dense_1_accuracy_2: 0.3500 - dense_1_accuracy_3: 0.3167 - dense_1_accuracy_4: 0.4167 - dense_1_accuracy_5: 0.6500 - dense_1_accuracy_6: 0.7000 - dense_1_accuracy_7: 0.7000 - dense_1_accuracy_8: 0.7833 - dense_1_accuracy_9: 0.7333 - dense_1_accuracy_10: 0.6833 - dense_1_accuracy_11: 0.7333 - dense_1_accuracy_12: 0.7833 - dense_1_accuracy_13: 0.6667 - dense_1_accuracy_14: 0.6833 - dense_1_accuracy_15: 0.7167 - dense_1_accuracy_16: 0.7667 - dense_1_accuracy_17: 0.7667 - dense_1_accuracy_18: 0.7500 - dense_1_accuracy_19: 0.7000 - dense_1_accuracy_20: 0.7833 - dense_1_accuracy_21: 0.8000 - dense_1_accuracy_22: 0.8000 - dense_1_accuracy_23: 0.7333 - dense_1_accuracy_24: 0.6833 - dense_1_accuracy_25: 0.8167 - dense_1_accuracy_26: 0.7167 - dense_1_accuracy_27: 0.8000 - dense_1_accuracy_28: 0.7667 - dense_1_accuracy_29: 0.0000e+00
Epoch 25/100
60/60 [==============================] - 0s 1ms/step - loss: 41.9766 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.3000 - dense_1_accuracy_2: 0.4167 - dense_1_accuracy_3: 0.3167 - dense_1_accuracy_4: 0.4833 - dense_1_accuracy_5: 0.6667 - dense_1_accuracy_6: 0.7167 - dense_1_accuracy_7: 0.7333 - dense_1_accuracy_8: 0.7833 - dense_1_accuracy_9: 0.7167 - dense_1_accuracy_10: 0.7000 - dense_1_accuracy_11: 0.7333 - dense_1_accuracy_12: 0.8333 - dense_1_accuracy_13: 0.8667 - dense_1_accuracy_14: 0.7333 - dense_1_accuracy_15: 0.7167 - dense_1_accuracy_16: 0.7667 - dense_1_accuracy_17: 0.8167 - dense_1_accuracy_18: 0.8000 - dense_1_accuracy_19: 0.7500 - dense_1_accuracy_20: 0.8333 - dense_1_accuracy_21: 0.7667 - dense_1_accuracy_22: 0.8000 - dense_1_accuracy_23: 0.7833 - dense_1_accuracy_24: 0.7833 - dense_1_accuracy_25: 0.8167 - dense_1_accuracy_26: 0.6833 - dense_1_accuracy_27: 0.8667 - dense_1_accuracy_28: 0.8333 - dense_1_accuracy_29: 0.0000e+00
Epoch 26/100
60/60 [==============================] - 0s 1ms/step - loss: 39.5593 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.3167 - dense_1_accuracy_2: 0.4333 - dense_1_accuracy_3: 0.3833 - dense_1_accuracy_4: 0.5000 - dense_1_accuracy_5: 0.7000 - dense_1_accuracy_6: 0.8500 - dense_1_accuracy_7: 0.7167 - dense_1_accuracy_8: 0.7833 - dense_1_accuracy_9: 0.7833 - dense_1_accuracy_10: 0.7333 - dense_1_accuracy_11: 0.7500 - dense_1_accuracy_12: 0.8667 - dense_1_accuracy_13: 0.9000 - dense_1_accuracy_14: 0.8000 - dense_1_accuracy_15: 0.7833 - dense_1_accuracy_16: 0.8833 - dense_1_accuracy_17: 0.8000 - dense_1_accuracy_18: 0.8500 - dense_1_accuracy_19: 0.8500 - dense_1_accuracy_20: 0.9000 - dense_1_accuracy_21: 0.8333 - dense_1_accuracy_22: 0.8500 - dense_1_accuracy_23: 0.8167 - dense_1_accuracy_24: 0.8167 - dense_1_accuracy_25: 0.8333 - dense_1_accuracy_26: 0.7833 - dense_1_accuracy_27: 0.8833 - dense_1_accuracy_28: 0.8333 - dense_1_accuracy_29: 0.0000e+00
Epoch 27/100
60/60 [==============================] - 0s 1ms/step - loss: 37.3176 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.3333 - dense_1_accuracy_2: 0.4833 - dense_1_accuracy_3: 0.4167 - dense_1_accuracy_4: 0.5833 - dense_1_accuracy_5: 0.7500 - dense_1_accuracy_6: 0.8500 - dense_1_accuracy_7: 0.7167 - dense_1_accuracy_8: 0.8000 - dense_1_accuracy_9: 0.8333 - dense_1_accuracy_10: 0.7667 - dense_1_accuracy_11: 0.7833 - dense_1_accuracy_12: 0.9000 - dense_1_accuracy_13: 0.9333 - dense_1_accuracy_14: 0.8667 - dense_1_accuracy_15: 0.8500 - dense_1_accuracy_16: 0.9000 - dense_1_accuracy_17: 0.8833 - dense_1_accuracy_18: 0.8333 - dense_1_accuracy_19: 0.8500 - dense_1_accuracy_20: 0.9167 - dense_1_accuracy_21: 0.9000 - dense_1_accuracy_22: 0.9000 - dense_1_accuracy_23: 0.8333 - dense_1_accuracy_24: 0.8500 - dense_1_accuracy_25: 0.8167 - dense_1_accuracy_26: 0.8000 - dense_1_accuracy_27: 0.9000 - dense_1_accuracy_28: 0.8667 - dense_1_accuracy_29: 0.0000e+00
Epoch 28/100
60/60 [==============================] - 0s 1ms/step - loss: 35.2965 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.3333 - dense_1_accuracy_2: 0.5000 - dense_1_accuracy_3: 0.4500 - dense_1_accuracy_4: 0.5833 - dense_1_accuracy_5: 0.7667 - dense_1_accuracy_6: 0.8500 - dense_1_accuracy_7: 0.7167 - dense_1_accuracy_8: 0.8167 - dense_1_accuracy_9: 0.8667 - dense_1_accuracy_10: 0.8000 - dense_1_accuracy_11: 0.8333 - dense_1_accuracy_12: 0.9167 - dense_1_accuracy_13: 0.9500 - dense_1_accuracy_14: 0.9000 - dense_1_accuracy_15: 0.8833 - dense_1_accuracy_16: 0.9500 - dense_1_accuracy_17: 0.9000 - dense_1_accuracy_18: 0.8500 - dense_1_accuracy_19: 0.8667 - dense_1_accuracy_20: 0.9167 - dense_1_accuracy_21: 0.9167 - dense_1_accuracy_22: 0.9167 - dense_1_accuracy_23: 0.8833 - dense_1_accuracy_24: 0.8833 - dense_1_accuracy_25: 0.8500 - dense_1_accuracy_26: 0.8167 - dense_1_accuracy_27: 0.9333 - dense_1_accuracy_28: 0.8833 - dense_1_accuracy_29: 0.0000e+00
Epoch 29/100
60/60 [==============================] - 0s 1ms/step - loss: 33.1478 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.3333 - dense_1_accuracy_2: 0.5000 - dense_1_accuracy_3: 0.4500 - dense_1_accuracy_4: 0.6833 - dense_1_accuracy_5: 0.8167 - dense_1_accuracy_6: 0.8667 - dense_1_accuracy_7: 0.7167 - dense_1_accuracy_8: 0.8833 - dense_1_accuracy_9: 0.9167 - dense_1_accuracy_10: 0.9333 - dense_1_accuracy_11: 0.8833 - dense_1_accuracy_12: 0.9500 - dense_1_accuracy_13: 0.9667 - dense_1_accuracy_14: 0.8667 - dense_1_accuracy_15: 0.8833 - dense_1_accuracy_16: 0.9667 - dense_1_accuracy_17: 0.9500 - dense_1_accuracy_18: 0.9167 - dense_1_accuracy_19: 0.9500 - dense_1_accuracy_20: 0.9333 - dense_1_accuracy_21: 0.9667 - dense_1_accuracy_22: 0.9167 - dense_1_accuracy_23: 0.9667 - dense_1_accuracy_24: 0.9833 - dense_1_accuracy_25: 0.9000 - dense_1_accuracy_26: 0.9500 - dense_1_accuracy_27: 0.9500 - dense_1_accuracy_28: 0.9333 - dense_1_accuracy_29: 0.0000e+00
Epoch 30/100
60/60 [==============================] - 0s 1ms/step - loss: 31.2518 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.3333 - dense_1_accuracy_2: 0.5167 - dense_1_accuracy_3: 0.5000 - dense_1_accuracy_4: 0.6833 - dense_1_accuracy_5: 0.8833 - dense_1_accuracy_6: 0.9000 - dense_1_accuracy_7: 0.7833 - dense_1_accuracy_8: 0.9000 - dense_1_accuracy_9: 0.9500 - dense_1_accuracy_10: 0.9500 - dense_1_accuracy_11: 0.9167 - dense_1_accuracy_12: 0.9833 - dense_1_accuracy_13: 0.9833 - dense_1_accuracy_14: 0.9500 - dense_1_accuracy_15: 0.9500 - dense_1_accuracy_16: 0.9833 - dense_1_accuracy_17: 1.0000 - dense_1_accuracy_18: 0.9667 - dense_1_accuracy_19: 0.9833 - dense_1_accuracy_20: 0.9333 - dense_1_accuracy_21: 0.9667 - dense_1_accuracy_22: 0.9333 - dense_1_accuracy_23: 1.0000 - dense_1_accuracy_24: 0.9833 - dense_1_accuracy_25: 0.9500 - dense_1_accuracy_26: 0.9500 - dense_1_accuracy_27: 0.9667 - dense_1_accuracy_28: 0.9500 - dense_1_accuracy_29: 0.0000e+00
Epoch 31/100
60/60 [==============================] - 0s 1ms/step - loss: 29.4504 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.3333 - dense_1_accuracy_2: 0.5500 - dense_1_accuracy_3: 0.5500 - dense_1_accuracy_4: 0.7000 - dense_1_accuracy_5: 0.9000 - dense_1_accuracy_6: 0.9167 - dense_1_accuracy_7: 0.8667 - dense_1_accuracy_8: 0.9000 - dense_1_accuracy_9: 0.9333 - dense_1_accuracy_10: 0.9500 - dense_1_accuracy_11: 0.9500 - dense_1_accuracy_12: 0.9833 - dense_1_accuracy_13: 0.9667 - dense_1_accuracy_14: 0.9333 - dense_1_accuracy_15: 0.9667 - dense_1_accuracy_16: 0.9833 - dense_1_accuracy_17: 1.0000 - dense_1_accuracy_18: 0.9667 - dense_1_accuracy_19: 0.9833 - dense_1_accuracy_20: 0.9500 - dense_1_accuracy_21: 0.9667 - dense_1_accuracy_22: 0.9833 - dense_1_accuracy_23: 1.0000 - dense_1_accuracy_24: 1.0000 - dense_1_accuracy_25: 0.9500 - dense_1_accuracy_26: 0.9500 - dense_1_accuracy_27: 0.9667 - dense_1_accuracy_28: 0.9667 - dense_1_accuracy_29: 0.0000e+00
Epoch 32/100
60/60 [==============================] - 0s 1ms/step - loss: 27.6794 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.3667 - dense_1_accuracy_2: 0.5667 - dense_1_accuracy_3: 0.5833 - dense_1_accuracy_4: 0.7333 - dense_1_accuracy_5: 0.9000 - dense_1_accuracy_6: 0.9333 - dense_1_accuracy_7: 0.8833 - dense_1_accuracy_8: 0.9333 - dense_1_accuracy_9: 0.9500 - dense_1_accuracy_10: 0.9500 - dense_1_accuracy_11: 0.9667 - dense_1_accuracy_12: 0.9833 - dense_1_accuracy_13: 0.9833 - dense_1_accuracy_14: 0.9500 - dense_1_accuracy_15: 0.9667 - dense_1_accuracy_16: 1.0000 - dense_1_accuracy_17: 1.0000 - dense_1_accuracy_18: 0.9833 - dense_1_accuracy_19: 1.0000 - dense_1_accuracy_20: 0.9833 - dense_1_accuracy_21: 1.0000 - dense_1_accuracy_22: 0.9833 - dense_1_accuracy_23: 1.0000 - dense_1_accuracy_24: 0.9833 - dense_1_accuracy_25: 0.9667 - dense_1_accuracy_26: 0.9500 - dense_1_accuracy_27: 0.9667 - dense_1_accuracy_28: 0.9500 - dense_1_accuracy_29: 0.0000e+00
Epoch 33/100
60/60 [==============================] - 0s 1ms/step - loss: 26.0487 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.4000 - dense_1_accuracy_2: 0.6167 - dense_1_accuracy_3: 0.6667 - dense_1_accuracy_4: 0.7833 - dense_1_accuracy_5: 0.9167 - dense_1_accuracy_6: 0.9500 - dense_1_accuracy_7: 0.9000 - dense_1_accuracy_8: 0.9500 - dense_1_accuracy_9: 0.9667 - dense_1_accuracy_10: 0.9833 - dense_1_accuracy_11: 0.9667 - dense_1_accuracy_12: 0.9833 - dense_1_accuracy_13: 0.9833 - dense_1_accuracy_14: 0.9500 - dense_1_accuracy_15: 0.9667 - dense_1_accuracy_16: 0.9833 - dense_1_accuracy_17: 1.0000 - dense_1_accuracy_18: 0.9833 - dense_1_accuracy_19: 1.0000 - dense_1_accuracy_20: 0.9667 - dense_1_accuracy_21: 1.0000 - dense_1_accuracy_22: 0.9833 - dense_1_accuracy_23: 1.0000 - dense_1_accuracy_24: 1.0000 - dense_1_accuracy_25: 0.9667 - dense_1_accuracy_26: 0.9333 - dense_1_accuracy_27: 0.9667 - dense_1_accuracy_28: 0.9667 - dense_1_accuracy_29: 0.0000e+00
Epoch 34/100
60/60 [==============================] - 0s 1ms/step - loss: 24.5103 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.4000 - dense_1_accuracy_2: 0.6333 - dense_1_accuracy_3: 0.7000 - dense_1_accuracy_4: 0.7833 - dense_1_accuracy_5: 0.9333 - dense_1_accuracy_6: 0.9500 - dense_1_accuracy_7: 0.9167 - dense_1_accuracy_8: 0.9833 - dense_1_accuracy_9: 1.0000 - dense_1_accuracy_10: 0.9833 - dense_1_accuracy_11: 0.9833 - dense_1_accuracy_12: 1.0000 - dense_1_accuracy_13: 0.9833 - dense_1_accuracy_14: 0.9833 - dense_1_accuracy_15: 1.0000 - dense_1_accuracy_16: 0.9833 - dense_1_accuracy_17: 1.0000 - dense_1_accuracy_18: 0.9833 - dense_1_accuracy_19: 1.0000 - dense_1_accuracy_20: 0.9833 - dense_1_accuracy_21: 1.0000 - dense_1_accuracy_22: 0.9833 - dense_1_accuracy_23: 1.0000 - dense_1_accuracy_24: 1.0000 - dense_1_accuracy_25: 0.9833 - dense_1_accuracy_26: 1.0000 - dense_1_accuracy_27: 0.9833 - dense_1_accuracy_28: 0.9667 - dense_1_accuracy_29: 0.0000e+00
Epoch 35/100
60/60 [==============================] - 0s 1ms/step - loss: 23.1215 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.4333 - dense_1_accuracy_2: 0.7000 - dense_1_accuracy_3: 0.7000 - dense_1_accuracy_4: 0.8500 - dense_1_accuracy_5: 0.9500 - dense_1_accuracy_6: 0.9667 - dense_1_accuracy_7: 0.9333 - dense_1_accuracy_8: 0.9833 - dense_1_accuracy_9: 1.0000 - dense_1_accuracy_10: 0.9833 - dense_1_accuracy_11: 0.9833 - dense_1_accuracy_12: 1.0000 - dense_1_accuracy_13: 0.9833 - dense_1_accuracy_14: 1.0000 - dense_1_accuracy_15: 1.0000 - dense_1_accuracy_16: 1.0000 - dense_1_accuracy_17: 1.0000 - dense_1_accuracy_18: 1.0000 - dense_1_accuracy_19: 1.0000 - dense_1_accuracy_20: 1.0000 - dense_1_accuracy_21: 1.0000 - dense_1_accuracy_22: 1.0000 - dense_1_accuracy_23: 1.0000 - dense_1_accuracy_24: 1.0000 - dense_1_accuracy_25: 0.9833 - dense_1_accuracy_26: 1.0000 - dense_1_accuracy_27: 0.9833 - dense_1_accuracy_28: 0.9667 - dense_1_accuracy_29: 0.0000e+00
Epoch 36/100
60/60 [==============================] - 0s 1ms/step - loss: 21.7918 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.4333 - dense_1_accuracy_2: 0.7333 - dense_1_accuracy_3: 0.7167 - dense_1_accuracy_4: 0.8667 - dense_1_accuracy_5: 0.9667 - dense_1_accuracy_6: 0.9500 - dense_1_accuracy_7: 0.9500 - dense_1_accuracy_8: 0.9833 - dense_1_accuracy_9: 1.0000 - dense_1_accuracy_10: 1.0000 - dense_1_accuracy_11: 1.0000 - dense_1_accuracy_12: 1.0000 - dense_1_accuracy_13: 0.9833 - dense_1_accuracy_14: 1.0000 - dense_1_accuracy_15: 1.0000 - dense_1_accuracy_16: 1.0000 - dense_1_accuracy_17: 1.0000 - dense_1_accuracy_18: 1.0000 - dense_1_accuracy_19: 1.0000 - dense_1_accuracy_20: 1.0000 - dense_1_accuracy_21: 1.0000 - dense_1_accuracy_22: 1.0000 - dense_1_accuracy_23: 1.0000 - dense_1_accuracy_24: 1.0000 - dense_1_accuracy_25: 0.9833 - dense_1_accuracy_26: 1.0000 - dense_1_accuracy_27: 0.9833 - dense_1_accuracy_28: 0.9667 - dense_1_accuracy_29: 0.0000e+00
Epoch 37/100
60/60 [==============================] - 0s 1ms/step - loss: 20.5974 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.4167 - dense_1_accuracy_2: 0.7333 - dense_1_accuracy_3: 0.7333 - dense_1_accuracy_4: 0.8833 - dense_1_accuracy_5: 0.9667 - dense_1_accuracy_6: 0.9833 - dense_1_accuracy_7: 0.9667 - dense_1_accuracy_8: 0.9833 - dense_1_accuracy_9: 1.0000 - dense_1_accuracy_10: 0.9833 - dense_1_accuracy_11: 1.0000 - dense_1_accuracy_12: 1.0000 - dense_1_accuracy_13: 1.0000 - dense_1_accuracy_14: 1.0000 - dense_1_accuracy_15: 1.0000 - dense_1_accuracy_16: 1.0000 - dense_1_accuracy_17: 1.0000 - dense_1_accuracy_18: 1.0000 - dense_1_accuracy_19: 1.0000 - dense_1_accuracy_20: 1.0000 - dense_1_accuracy_21: 1.0000 - dense_1_accuracy_22: 1.0000 - dense_1_accuracy_23: 1.0000 - dense_1_accuracy_24: 1.0000 - dense_1_accuracy_25: 0.9833 - dense_1_accuracy_26: 1.0000 - dense_1_accuracy_27: 0.9833 - dense_1_accuracy_28: 0.9667 - dense_1_accuracy_29: 0.0000e+00
Epoch 38/100
60/60 [==============================] - 0s 1ms/step - loss: 19.4903 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.4833 - dense_1_accuracy_2: 0.7333 - dense_1_accuracy_3: 0.7333 - dense_1_accuracy_4: 0.8833 - dense_1_accuracy_5: 0.9667 - dense_1_accuracy_6: 0.9833 - dense_1_accuracy_7: 0.9833 - dense_1_accuracy_8: 0.9833 - dense_1_accuracy_9: 1.0000 - dense_1_accuracy_10: 1.0000 - dense_1_accuracy_11: 1.0000 - dense_1_accuracy_12: 1.0000 - dense_1_accuracy_13: 1.0000 - dense_1_accuracy_14: 1.0000 - dense_1_accuracy_15: 1.0000 - dense_1_accuracy_16: 1.0000 - dense_1_accuracy_17: 1.0000 - dense_1_accuracy_18: 1.0000 - dense_1_accuracy_19: 1.0000 - dense_1_accuracy_20: 1.0000 - dense_1_accuracy_21: 1.0000 - dense_1_accuracy_22: 1.0000 - dense_1_accuracy_23: 1.0000 - dense_1_accuracy_24: 1.0000 - dense_1_accuracy_25: 0.9833 - dense_1_accuracy_26: 1.0000 - dense_1_accuracy_27: 0.9833 - dense_1_accuracy_28: 0.9667 - dense_1_accuracy_29: 0.0000e+00
Epoch 39/100
60/60 [==============================] - 0s 1ms/step - loss: 18.4846 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.5000 - dense_1_accuracy_2: 0.7833 - dense_1_accuracy_3: 0.7833 - dense_1_accuracy_4: 0.8833 - dense_1_accuracy_5: 0.9667 - dense_1_accuracy_6: 0.9833 - dense_1_accuracy_7: 0.9833 - dense_1_accuracy_8: 0.9833 - dense_1_accuracy_9: 1.0000 - dense_1_accuracy_10: 1.0000 - dense_1_accuracy_11: 1.0000 - dense_1_accuracy_12: 1.0000 - dense_1_accuracy_13: 1.0000 - dense_1_accuracy_14: 1.0000 - dense_1_accuracy_15: 1.0000 - dense_1_accuracy_16: 1.0000 - dense_1_accuracy_17: 1.0000 - dense_1_accuracy_18: 1.0000 - dense_1_accuracy_19: 1.0000 - dense_1_accuracy_20: 1.0000 - dense_1_accuracy_21: 1.0000 - dense_1_accuracy_22: 1.0000 - dense_1_accuracy_23: 1.0000 - dense_1_accuracy_24: 1.0000 - dense_1_accuracy_25: 0.9833 - dense_1_accuracy_26: 1.0000 - dense_1_accuracy_27: 0.9833 - dense_1_accuracy_28: 0.9667 - dense_1_accuracy_29: 0.0000e+00
Epoch 40/100
60/60 [==============================] - 0s 1ms/step - loss: 17.5442 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.5000 - dense_1_accuracy_2: 0.8000 - dense_1_accuracy_3: 0.8000 - dense_1_accuracy_4: 0.8833 - dense_1_accuracy_5: 0.9833 - dense_1_accuracy_6: 0.9833 - dense_1_accuracy_7: 0.9833 - dense_1_accuracy_8: 0.9833 - dense_1_accuracy_9: 1.0000 - dense_1_accuracy_10: 1.0000 - dense_1_accuracy_11: 1.0000 - dense_1_accuracy_12: 1.0000 - dense_1_accuracy_13: 1.0000 - dense_1_accuracy_14: 1.0000 - dense_1_accuracy_15: 1.0000 - dense_1_accuracy_16: 1.0000 - dense_1_accuracy_17: 1.0000 - dense_1_accuracy_18: 1.0000 - dense_1_accuracy_19: 1.0000 - dense_1_accuracy_20: 1.0000 - dense_1_accuracy_21: 1.0000 - dense_1_accuracy_22: 1.0000 - dense_1_accuracy_23: 1.0000 - dense_1_accuracy_24: 1.0000 - dense_1_accuracy_25: 1.0000 - dense_1_accuracy_26: 1.0000 - dense_1_accuracy_27: 0.9833 - dense_1_accuracy_28: 0.9833 - dense_1_accuracy_29: 0.0000e+00
Epoch 41/100
60/60 [==============================] - 0s 1ms/step - loss: 16.6850 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.5000 - dense_1_accuracy_2: 0.8000 - dense_1_accuracy_3: 0.8000 - dense_1_accuracy_4: 0.9167 - dense_1_accuracy_5: 0.9833 - dense_1_accuracy_6: 0.9833 - dense_1_accuracy_7: 0.9833 - dense_1_accuracy_8: 0.9833 - dense_1_accuracy_9: 1.0000 - dense_1_accuracy_10: 1.0000 - dense_1_accuracy_11: 1.0000 - dense_1_accuracy_12: 1.0000 - dense_1_accuracy_13: 1.0000 - dense_1_accuracy_14: 1.0000 - dense_1_accuracy_15: 1.0000 - dense_1_accuracy_16: 1.0000 - dense_1_accuracy_17: 1.0000 - dense_1_accuracy_18: 1.0000 - dense_1_accuracy_19: 1.0000 - dense_1_accuracy_20: 1.0000 - dense_1_accuracy_21: 1.0000 - dense_1_accuracy_22: 1.0000 - dense_1_accuracy_23: 1.0000 - dense_1_accuracy_24: 1.0000 - dense_1_accuracy_25: 1.0000 - dense_1_accuracy_26: 1.0000 - dense_1_accuracy_27: 0.9833 - dense_1_accuracy_28: 0.9833 - dense_1_accuracy_29: 0.0000e+00
Epoch 42/100
60/60 [==============================] - 0s 1ms/step - loss: 15.9531 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.5000 - dense_1_accuracy_2: 0.8333 - dense_1_accuracy_3: 0.8167 - dense_1_accuracy_4: 0.9333 - dense_1_accuracy_5: 1.0000 - dense_1_accuracy_6: 0.9833 - dense_1_accuracy_7: 0.9833 - dense_1_accuracy_8: 0.9833 - dense_1_accuracy_9: 1.0000 - dense_1_accuracy_10: 1.0000 - dense_1_accuracy_11: 1.0000 - dense_1_accuracy_12: 1.0000 - dense_1_accuracy_13: 1.0000 - dense_1_accuracy_14: 1.0000 - dense_1_accuracy_15: 1.0000 - dense_1_accuracy_16: 1.0000 - dense_1_accuracy_17: 1.0000 - dense_1_accuracy_18: 1.0000 - dense_1_accuracy_19: 1.0000 - dense_1_accuracy_20: 1.0000 - dense_1_accuracy_21: 1.0000 - dense_1_accuracy_22: 1.0000 - dense_1_accuracy_23: 1.0000 - dense_1_accuracy_24: 1.0000 - dense_1_accuracy_25: 1.0000 - dense_1_accuracy_26: 1.0000 - dense_1_accuracy_27: 0.9833 - dense_1_accuracy_28: 0.9833 - dense_1_accuracy_29: 0.0000e+00
Epoch 43/100
60/60 [==============================] - 0s 1ms/step - loss: 15.2606 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.5167 - dense_1_accuracy_2: 0.8333 - dense_1_accuracy_3: 0.8500 - dense_1_accuracy_4: 0.9500 - dense_1_accuracy_5: 1.0000 - dense_1_accuracy_6: 0.9833 - dense_1_accuracy_7: 0.9833 - dense_1_accuracy_8: 0.9833 - dense_1_accuracy_9: 1.0000 - dense_1_accuracy_10: 1.0000 - dense_1_accuracy_11: 1.0000 - dense_1_accuracy_12: 1.0000 - dense_1_accuracy_13: 1.0000 - dense_1_accuracy_14: 1.0000 - dense_1_accuracy_15: 1.0000 - dense_1_accuracy_16: 1.0000 - dense_1_accuracy_17: 1.0000 - dense_1_accuracy_18: 1.0000 - dense_1_accuracy_19: 1.0000 - dense_1_accuracy_20: 1.0000 - dense_1_accuracy_21: 1.0000 - dense_1_accuracy_22: 1.0000 - dense_1_accuracy_23: 1.0000 - dense_1_accuracy_24: 1.0000 - dense_1_accuracy_25: 1.0000 - dense_1_accuracy_26: 1.0000 - dense_1_accuracy_27: 0.9833 - dense_1_accuracy_28: 0.9833 - dense_1_accuracy_29: 0.0000e+00
Epoch 44/100
60/60 [==============================] - 0s 1ms/step - loss: 14.6169 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.5333 - dense_1_accuracy_2: 0.8333 - dense_1_accuracy_3: 0.8500 - dense_1_accuracy_4: 0.9667 - dense_1_accuracy_5: 0.9833 - dense_1_accuracy_6: 0.9833 - dense_1_accuracy_7: 1.0000 - dense_1_accuracy_8: 0.9833 - dense_1_accuracy_9: 1.0000 - dense_1_accuracy_10: 1.0000 - dense_1_accuracy_11: 1.0000 - dense_1_accuracy_12: 1.0000 - dense_1_accuracy_13: 1.0000 - dense_1_accuracy_14: 1.0000 - dense_1_accuracy_15: 1.0000 - dense_1_accuracy_16: 1.0000 - dense_1_accuracy_17: 1.0000 - dense_1_accuracy_18: 1.0000 - dense_1_accuracy_19: 1.0000 - dense_1_accuracy_20: 1.0000 - dense_1_accuracy_21: 1.0000 - dense_1_accuracy_22: 1.0000 - dense_1_accuracy_23: 1.0000 - dense_1_accuracy_24: 1.0000 - dense_1_accuracy_25: 1.0000 - dense_1_accuracy_26: 1.0000 - dense_1_accuracy_27: 0.9833 - dense_1_accuracy_28: 0.9833 - dense_1_accuracy_29: 0.0000e+00
Epoch 45/100
60/60 [==============================] - 0s 1ms/step - loss: 14.0359 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.5333 - dense_1_accuracy_2: 0.8333 - dense_1_accuracy_3: 0.8500 - dense_1_accuracy_4: 0.9667 - dense_1_accuracy_5: 1.0000 - dense_1_accuracy_6: 0.9833 - dense_1_accuracy_7: 1.0000 - dense_1_accuracy_8: 0.9833 - dense_1_accuracy_9: 1.0000 - dense_1_accuracy_10: 1.0000 - dense_1_accuracy_11: 1.0000 - dense_1_accuracy_12: 1.0000 - dense_1_accuracy_13: 1.0000 - dense_1_accuracy_14: 1.0000 - dense_1_accuracy_15: 1.0000 - dense_1_accuracy_16: 1.0000 - dense_1_accuracy_17: 1.0000 - dense_1_accuracy_18: 1.0000 - dense_1_accuracy_19: 1.0000 - dense_1_accuracy_20: 1.0000 - dense_1_accuracy_21: 1.0000 - dense_1_accuracy_22: 1.0000 - dense_1_accuracy_23: 1.0000 - dense_1_accuracy_24: 1.0000 - dense_1_accuracy_25: 1.0000 - dense_1_accuracy_26: 1.0000 - dense_1_accuracy_27: 0.9833 - dense_1_accuracy_28: 0.9833 - dense_1_accuracy_29: 0.0000e+00
Epoch 46/100
60/60 [==============================] - 0s 1ms/step - loss: 13.5365 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.5333 - dense_1_accuracy_2: 0.8333 - dense_1_accuracy_3: 0.8500 - dense_1_accuracy_4: 0.9667 - dense_1_accuracy_5: 0.9833 - dense_1_accuracy_6: 0.9833 - dense_1_accuracy_7: 1.0000 - dense_1_accuracy_8: 0.9833 - dense_1_accuracy_9: 1.0000 - dense_1_accuracy_10: 1.0000 - dense_1_accuracy_11: 1.0000 - dense_1_accuracy_12: 1.0000 - dense_1_accuracy_13: 1.0000 - dense_1_accuracy_14: 1.0000 - dense_1_accuracy_15: 1.0000 - dense_1_accuracy_16: 1.0000 - dense_1_accuracy_17: 1.0000 - dense_1_accuracy_18: 1.0000 - dense_1_accuracy_19: 1.0000 - dense_1_accuracy_20: 1.0000 - dense_1_accuracy_21: 1.0000 - dense_1_accuracy_22: 1.0000 - dense_1_accuracy_23: 1.0000 - dense_1_accuracy_24: 1.0000 - dense_1_accuracy_25: 1.0000 - dense_1_accuracy_26: 1.0000 - dense_1_accuracy_27: 0.9833 - dense_1_accuracy_28: 0.9833 - dense_1_accuracy_29: 0.0000e+00
Epoch 47/100
60/60 [==============================] - 0s 1ms/step - loss: 13.0739 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.5333 - dense_1_accuracy_2: 0.8333 - dense_1_accuracy_3: 0.8500 - dense_1_accuracy_4: 0.9667 - dense_1_accuracy_5: 1.0000 - dense_1_accuracy_6: 0.9833 - dense_1_accuracy_7: 1.0000 - dense_1_accuracy_8: 0.9833 - dense_1_accuracy_9: 1.0000 - dense_1_accuracy_10: 1.0000 - dense_1_accuracy_11: 1.0000 - dense_1_accuracy_12: 1.0000 - dense_1_accuracy_13: 1.0000 - dense_1_accuracy_14: 1.0000 - dense_1_accuracy_15: 1.0000 - dense_1_accuracy_16: 1.0000 - dense_1_accuracy_17: 1.0000 - dense_1_accuracy_18: 1.0000 - dense_1_accuracy_19: 1.0000 - dense_1_accuracy_20: 1.0000 - dense_1_accuracy_21: 1.0000 - dense_1_accuracy_22: 1.0000 - dense_1_accuracy_23: 1.0000 - dense_1_accuracy_24: 1.0000 - dense_1_accuracy_25: 1.0000 - dense_1_accuracy_26: 1.0000 - dense_1_accuracy_27: 1.0000 - dense_1_accuracy_28: 0.9833 - dense_1_accuracy_29: 0.0000e+00
Epoch 48/100
60/60 [==============================] - 0s 1ms/step - loss: 12.6324 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.5333 - dense_1_accuracy_2: 0.8333 - dense_1_accuracy_3: 0.8667 - dense_1_accuracy_4: 0.9833 - dense_1_accuracy_5: 1.0000 - dense_1_accuracy_6: 0.9833 - dense_1_accuracy_7: 1.0000 - dense_1_accuracy_8: 0.9833 - dense_1_accuracy_9: 1.0000 - dense_1_accuracy_10: 1.0000 - dense_1_accuracy_11: 1.0000 - dense_1_accuracy_12: 1.0000 - dense_1_accuracy_13: 1.0000 - dense_1_accuracy_14: 1.0000 - dense_1_accuracy_15: 1.0000 - dense_1_accuracy_16: 1.0000 - dense_1_accuracy_17: 1.0000 - dense_1_accuracy_18: 1.0000 - dense_1_accuracy_19: 1.0000 - dense_1_accuracy_20: 1.0000 - dense_1_accuracy_21: 1.0000 - dense_1_accuracy_22: 1.0000 - dense_1_accuracy_23: 1.0000 - dense_1_accuracy_24: 1.0000 - dense_1_accuracy_25: 1.0000 - dense_1_accuracy_26: 1.0000 - dense_1_accuracy_27: 1.0000 - dense_1_accuracy_28: 0.9833 - dense_1_accuracy_29: 0.0000e+00
Epoch 49/100
60/60 [==============================] - 0s 1ms/step - loss: 12.2587 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.5500 - dense_1_accuracy_2: 0.8333 - dense_1_accuracy_3: 0.8667 - dense_1_accuracy_4: 0.9833 - dense_1_accuracy_5: 1.0000 - dense_1_accuracy_6: 0.9833 - dense_1_accuracy_7: 1.0000 - dense_1_accuracy_8: 0.9833 - dense_1_accuracy_9: 1.0000 - dense_1_accuracy_10: 1.0000 - dense_1_accuracy_11: 1.0000 - dense_1_accuracy_12: 1.0000 - dense_1_accuracy_13: 1.0000 - dense_1_accuracy_14: 1.0000 - dense_1_accuracy_15: 1.0000 - dense_1_accuracy_16: 1.0000 - dense_1_accuracy_17: 1.0000 - dense_1_accuracy_18: 1.0000 - dense_1_accuracy_19: 1.0000 - dense_1_accuracy_20: 1.0000 - dense_1_accuracy_21: 1.0000 - dense_1_accuracy_22: 1.0000 - dense_1_accuracy_23: 1.0000 - dense_1_accuracy_24: 1.0000 - dense_1_accuracy_25: 1.0000 - dense_1_accuracy_26: 1.0000 - dense_1_accuracy_27: 1.0000 - dense_1_accuracy_28: 0.9833 - dense_1_accuracy_29: 0.0000e+00
Epoch 50/100
60/60 [==============================] - 0s 1ms/step - loss: 11.9156 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.5500 - dense_1_accuracy_2: 0.8500 - dense_1_accuracy_3: 0.8667 - dense_1_accuracy_4: 0.9833 - dense_1_accuracy_5: 1.0000 - dense_1_accuracy_6: 0.9833 - dense_1_accuracy_7: 1.0000 - dense_1_accuracy_8: 0.9833 - dense_1_accuracy_9: 1.0000 - dense_1_accuracy_10: 1.0000 - dense_1_accuracy_11: 1.0000 - dense_1_accuracy_12: 1.0000 - dense_1_accuracy_13: 1.0000 - dense_1_accuracy_14: 1.0000 - dense_1_accuracy_15: 1.0000 - dense_1_accuracy_16: 1.0000 - dense_1_accuracy_17: 1.0000 - dense_1_accuracy_18: 1.0000 - dense_1_accuracy_19: 1.0000 - dense_1_accuracy_20: 1.0000 - dense_1_accuracy_21: 1.0000 - dense_1_accuracy_22: 1.0000 - dense_1_accuracy_23: 1.0000 - dense_1_accuracy_24: 1.0000 - dense_1_accuracy_25: 1.0000 - dense_1_accuracy_26: 1.0000 - dense_1_accuracy_27: 1.0000 - dense_1_accuracy_28: 0.9833 - dense_1_accuracy_29: 0.0000e+00
Epoch 51/100
60/60 [==============================] - 0s 1ms/step - loss: 11.6561 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.5500 - dense_1_accuracy_2: 0.8667 - dense_1_accuracy_3: 0.9000 - dense_1_accuracy_4: 0.9833 - dense_1_accuracy_5: 0.9833 - dense_1_accuracy_6: 0.9833 - dense_1_accuracy_7: 1.0000 - dense_1_accuracy_8: 1.0000 - dense_1_accuracy_9: 1.0000 - dense_1_accuracy_10: 1.0000 - dense_1_accuracy_11: 1.0000 - dense_1_accuracy_12: 1.0000 - dense_1_accuracy_13: 1.0000 - dense_1_accuracy_14: 1.0000 - dense_1_accuracy_15: 1.0000 - dense_1_accuracy_16: 1.0000 - dense_1_accuracy_17: 1.0000 - dense_1_accuracy_18: 1.0000 - dense_1_accuracy_19: 1.0000 - dense_1_accuracy_20: 1.0000 - dense_1_accuracy_21: 1.0000 - dense_1_accuracy_22: 1.0000 - dense_1_accuracy_23: 1.0000 - dense_1_accuracy_24: 1.0000 - dense_1_accuracy_25: 1.0000 - dense_1_accuracy_26: 1.0000 - dense_1_accuracy_27: 1.0000 - dense_1_accuracy_28: 0.9833 - dense_1_accuracy_29: 0.0000e+00
Epoch 52/100
60/60 [==============================] - 0s 1ms/step - loss: 11.3376 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.5500 - dense_1_accuracy_2: 0.8667 - dense_1_accuracy_3: 0.9000 - dense_1_accuracy_4: 0.9833 - dense_1_accuracy_5: 1.0000 - dense_1_accuracy_6: 0.9833 - dense_1_accuracy_7: 1.0000 - dense_1_accuracy_8: 1.0000 - dense_1_accuracy_9: 1.0000 - dense_1_accuracy_10: 1.0000 - dense_1_accuracy_11: 1.0000 - dense_1_accuracy_12: 1.0000 - dense_1_accuracy_13: 1.0000 - dense_1_accuracy_14: 1.0000 - dense_1_accuracy_15: 1.0000 - dense_1_accuracy_16: 1.0000 - dense_1_accuracy_17: 1.0000 - dense_1_accuracy_18: 1.0000 - dense_1_accuracy_19: 1.0000 - dense_1_accuracy_20: 1.0000 - dense_1_accuracy_21: 1.0000 - dense_1_accuracy_22: 1.0000 - dense_1_accuracy_23: 1.0000 - dense_1_accuracy_24: 1.0000 - dense_1_accuracy_25: 1.0000 - dense_1_accuracy_26: 1.0000 - dense_1_accuracy_27: 1.0000 - dense_1_accuracy_28: 0.9833 - dense_1_accuracy_29: 0.0000e+00
Epoch 53/100
60/60 [==============================] - 0s 1ms/step - loss: 11.0278 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.5500 - dense_1_accuracy_2: 0.8667 - dense_1_accuracy_3: 0.9000 - dense_1_accuracy_4: 0.9833 - dense_1_accuracy_5: 1.0000 - dense_1_accuracy_6: 0.9833 - dense_1_accuracy_7: 1.0000 - dense_1_accuracy_8: 1.0000 - dense_1_accuracy_9: 1.0000 - dense_1_accuracy_10: 1.0000 - dense_1_accuracy_11: 1.0000 - dense_1_accuracy_12: 1.0000 - dense_1_accuracy_13: 1.0000 - dense_1_accuracy_14: 1.0000 - dense_1_accuracy_15: 1.0000 - dense_1_accuracy_16: 1.0000 - dense_1_accuracy_17: 1.0000 - dense_1_accuracy_18: 1.0000 - dense_1_accuracy_19: 1.0000 - dense_1_accuracy_20: 1.0000 - dense_1_accuracy_21: 1.0000 - dense_1_accuracy_22: 1.0000 - dense_1_accuracy_23: 1.0000 - dense_1_accuracy_24: 1.0000 - dense_1_accuracy_25: 1.0000 - dense_1_accuracy_26: 1.0000 - dense_1_accuracy_27: 1.0000 - dense_1_accuracy_28: 0.9833 - dense_1_accuracy_29: 0.0000e+00
Epoch 54/100
60/60 [==============================] - 0s 1ms/step - loss: 10.7868 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.5500 - dense_1_accuracy_2: 0.8667 - dense_1_accuracy_3: 0.9333 - dense_1_accuracy_4: 0.9833 - dense_1_accuracy_5: 1.0000 - dense_1_accuracy_6: 0.9833 - dense_1_accuracy_7: 1.0000 - dense_1_accuracy_8: 1.0000 - dense_1_accuracy_9: 1.0000 - dense_1_accuracy_10: 1.0000 - dense_1_accuracy_11: 1.0000 - dense_1_accuracy_12: 1.0000 - dense_1_accuracy_13: 1.0000 - dense_1_accuracy_14: 1.0000 - dense_1_accuracy_15: 1.0000 - dense_1_accuracy_16: 1.0000 - dense_1_accuracy_17: 1.0000 - dense_1_accuracy_18: 1.0000 - dense_1_accuracy_19: 1.0000 - dense_1_accuracy_20: 1.0000 - dense_1_accuracy_21: 1.0000 - dense_1_accuracy_22: 1.0000 - dense_1_accuracy_23: 1.0000 - dense_1_accuracy_24: 1.0000 - dense_1_accuracy_25: 1.0000 - dense_1_accuracy_26: 1.0000 - dense_1_accuracy_27: 1.0000 - dense_1_accuracy_28: 0.9833 - dense_1_accuracy_29: 0.0000e+00
Epoch 55/100
60/60 [==============================] - 0s 1ms/step - loss: 10.6172 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.5500 - dense_1_accuracy_2: 0.8667 - dense_1_accuracy_3: 0.9333 - dense_1_accuracy_4: 0.9833 - dense_1_accuracy_5: 1.0000 - dense_1_accuracy_6: 0.9833 - dense_1_accuracy_7: 1.0000 - dense_1_accuracy_8: 1.0000 - dense_1_accuracy_9: 1.0000 - dense_1_accuracy_10: 1.0000 - dense_1_accuracy_11: 1.0000 - dense_1_accuracy_12: 1.0000 - dense_1_accuracy_13: 1.0000 - dense_1_accuracy_14: 1.0000 - dense_1_accuracy_15: 1.0000 - dense_1_accuracy_16: 1.0000 - dense_1_accuracy_17: 1.0000 - dense_1_accuracy_18: 1.0000 - dense_1_accuracy_19: 1.0000 - dense_1_accuracy_20: 1.0000 - dense_1_accuracy_21: 1.0000 - dense_1_accuracy_22: 1.0000 - dense_1_accuracy_23: 1.0000 - dense_1_accuracy_24: 1.0000 - dense_1_accuracy_25: 1.0000 - dense_1_accuracy_26: 1.0000 - dense_1_accuracy_27: 1.0000 - dense_1_accuracy_28: 0.9833 - dense_1_accuracy_29: 0.0000e+00
Epoch 56/100
60/60 [==============================] - 0s 1ms/step - loss: 10.3823 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.6000 - dense_1_accuracy_2: 0.8667 - dense_1_accuracy_3: 0.9333 - dense_1_accuracy_4: 0.9833 - dense_1_accuracy_5: 1.0000 - dense_1_accuracy_6: 1.0000 - dense_1_accuracy_7: 1.0000 - dense_1_accuracy_8: 1.0000 - dense_1_accuracy_9: 1.0000 - dense_1_accuracy_10: 1.0000 - dense_1_accuracy_11: 1.0000 - dense_1_accuracy_12: 1.0000 - dense_1_accuracy_13: 1.0000 - dense_1_accuracy_14: 1.0000 - dense_1_accuracy_15: 1.0000 - dense_1_accuracy_16: 1.0000 - dense_1_accuracy_17: 1.0000 - dense_1_accuracy_18: 1.0000 - dense_1_accuracy_19: 1.0000 - dense_1_accuracy_20: 1.0000 - dense_1_accuracy_21: 1.0000 - dense_1_accuracy_22: 1.0000 - dense_1_accuracy_23: 1.0000 - dense_1_accuracy_24: 1.0000 - dense_1_accuracy_25: 1.0000 - dense_1_accuracy_26: 1.0000 - dense_1_accuracy_27: 1.0000 - dense_1_accuracy_28: 0.9833 - dense_1_accuracy_29: 0.0000e+00
Epoch 57/100
60/60 [==============================] - 0s 1ms/step - loss: 10.1989 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.6000 - dense_1_accuracy_2: 0.8667 - dense_1_accuracy_3: 0.9500 - dense_1_accuracy_4: 0.9833 - dense_1_accuracy_5: 1.0000 - dense_1_accuracy_6: 1.0000 - dense_1_accuracy_7: 1.0000 - dense_1_accuracy_8: 1.0000 - dense_1_accuracy_9: 1.0000 - dense_1_accuracy_10: 1.0000 - dense_1_accuracy_11: 1.0000 - dense_1_accuracy_12: 1.0000 - dense_1_accuracy_13: 1.0000 - dense_1_accuracy_14: 1.0000 - dense_1_accuracy_15: 1.0000 - dense_1_accuracy_16: 1.0000 - dense_1_accuracy_17: 1.0000 - dense_1_accuracy_18: 1.0000 - dense_1_accuracy_19: 1.0000 - dense_1_accuracy_20: 1.0000 - dense_1_accuracy_21: 1.0000 - dense_1_accuracy_22: 1.0000 - dense_1_accuracy_23: 1.0000 - dense_1_accuracy_24: 1.0000 - dense_1_accuracy_25: 1.0000 - dense_1_accuracy_26: 1.0000 - dense_1_accuracy_27: 1.0000 - dense_1_accuracy_28: 0.9833 - dense_1_accuracy_29: 0.0000e+00
Epoch 58/100
60/60 [==============================] - 0s 1ms/step - loss: 10.0857 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.6000 - dense_1_accuracy_2: 0.8667 - dense_1_accuracy_3: 0.9500 - dense_1_accuracy_4: 0.9833 - dense_1_accuracy_5: 1.0000 - dense_1_accuracy_6: 1.0000 - dense_1_accuracy_7: 1.0000 - dense_1_accuracy_8: 1.0000 - dense_1_accuracy_9: 1.0000 - dense_1_accuracy_10: 1.0000 - dense_1_accuracy_11: 1.0000 - dense_1_accuracy_12: 1.0000 - dense_1_accuracy_13: 1.0000 - dense_1_accuracy_14: 1.0000 - dense_1_accuracy_15: 1.0000 - dense_1_accuracy_16: 1.0000 - dense_1_accuracy_17: 1.0000 - dense_1_accuracy_18: 1.0000 - dense_1_accuracy_19: 1.0000 - dense_1_accuracy_20: 1.0000 - dense_1_accuracy_21: 1.0000 - dense_1_accuracy_22: 1.0000 - dense_1_accuracy_23: 1.0000 - dense_1_accuracy_24: 1.0000 - dense_1_accuracy_25: 1.0000 - dense_1_accuracy_26: 1.0000 - dense_1_accuracy_27: 1.0000 - dense_1_accuracy_28: 0.9833 - dense_1_accuracy_29: 0.0000e+00
Epoch 59/100
60/60 [==============================] - 0s 1ms/step - loss: 9.9101 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.6000 - dense_1_accuracy_2: 0.8667 - dense_1_accuracy_3: 0.9667 - dense_1_accuracy_4: 0.9833 - dense_1_accuracy_5: 1.0000 - dense_1_accuracy_6: 1.0000 - dense_1_accuracy_7: 1.0000 - dense_1_accuracy_8: 1.0000 - dense_1_accuracy_9: 1.0000 - dense_1_accuracy_10: 1.0000 - dense_1_accuracy_11: 1.0000 - dense_1_accuracy_12: 1.0000 - dense_1_accuracy_13: 1.0000 - dense_1_accuracy_14: 1.0000 - dense_1_accuracy_15: 1.0000 - dense_1_accuracy_16: 1.0000 - dense_1_accuracy_17: 1.0000 - dense_1_accuracy_18: 1.0000 - dense_1_accuracy_19: 1.0000 - dense_1_accuracy_20: 1.0000 - dense_1_accuracy_21: 1.0000 - dense_1_accuracy_22: 1.0000 - dense_1_accuracy_23: 1.0000 - dense_1_accuracy_24: 1.0000 - dense_1_accuracy_25: 1.0000 - dense_1_accuracy_26: 1.0000 - dense_1_accuracy_27: 1.0000 - dense_1_accuracy_28: 0.9833 - dense_1_accuracy_29: 0.0000e+00
Epoch 60/100
60/60 [==============================] - 0s 1ms/step - loss: 9.7498 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.6000 - dense_1_accuracy_2: 0.8833 - dense_1_accuracy_3: 0.9667 - dense_1_accuracy_4: 0.9833 - dense_1_accuracy_5: 1.0000 - dense_1_accuracy_6: 1.0000 - dense_1_accuracy_7: 1.0000 - dense_1_accuracy_8: 1.0000 - dense_1_accuracy_9: 1.0000 - dense_1_accuracy_10: 1.0000 - dense_1_accuracy_11: 1.0000 - dense_1_accuracy_12: 1.0000 - dense_1_accuracy_13: 1.0000 - dense_1_accuracy_14: 1.0000 - dense_1_accuracy_15: 1.0000 - dense_1_accuracy_16: 1.0000 - dense_1_accuracy_17: 1.0000 - dense_1_accuracy_18: 1.0000 - dense_1_accuracy_19: 1.0000 - dense_1_accuracy_20: 1.0000 - dense_1_accuracy_21: 1.0000 - dense_1_accuracy_22: 1.0000 - dense_1_accuracy_23: 1.0000 - dense_1_accuracy_24: 1.0000 - dense_1_accuracy_25: 1.0000 - dense_1_accuracy_26: 1.0000 - dense_1_accuracy_27: 1.0000 - dense_1_accuracy_28: 0.9833 - dense_1_accuracy_29: 0.0000e+00
Epoch 61/100
60/60 [==============================] - 0s 1ms/step - loss: 9.5569 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.6000 - dense_1_accuracy_2: 0.8833 - dense_1_accuracy_3: 0.9667 - dense_1_accuracy_4: 0.9833 - dense_1_accuracy_5: 1.0000 - dense_1_accuracy_6: 1.0000 - dense_1_accuracy_7: 1.0000 - dense_1_accuracy_8: 1.0000 - dense_1_accuracy_9: 1.0000 - dense_1_accuracy_10: 1.0000 - dense_1_accuracy_11: 1.0000 - dense_1_accuracy_12: 1.0000 - dense_1_accuracy_13: 1.0000 - dense_1_accuracy_14: 1.0000 - dense_1_accuracy_15: 1.0000 - dense_1_accuracy_16: 1.0000 - dense_1_accuracy_17: 1.0000 - dense_1_accuracy_18: 1.0000 - dense_1_accuracy_19: 1.0000 - dense_1_accuracy_20: 1.0000 - dense_1_accuracy_21: 1.0000 - dense_1_accuracy_22: 1.0000 - dense_1_accuracy_23: 1.0000 - dense_1_accuracy_24: 1.0000 - dense_1_accuracy_25: 1.0000 - dense_1_accuracy_26: 1.0000 - dense_1_accuracy_27: 1.0000 - dense_1_accuracy_28: 0.9833 - dense_1_accuracy_29: 0.0000e+00
Epoch 62/100
60/60 [==============================] - 0s 1ms/step - loss: 9.5195 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.6000 - dense_1_accuracy_2: 0.8833 - dense_1_accuracy_3: 0.9667 - dense_1_accuracy_4: 0.9833 - dense_1_accuracy_5: 1.0000 - dense_1_accuracy_6: 1.0000 - dense_1_accuracy_7: 1.0000 - dense_1_accuracy_8: 1.0000 - dense_1_accuracy_9: 1.0000 - dense_1_accuracy_10: 1.0000 - dense_1_accuracy_11: 1.0000 - dense_1_accuracy_12: 1.0000 - dense_1_accuracy_13: 1.0000 - dense_1_accuracy_14: 1.0000 - dense_1_accuracy_15: 1.0000 - dense_1_accuracy_16: 1.0000 - dense_1_accuracy_17: 1.0000 - dense_1_accuracy_18: 1.0000 - dense_1_accuracy_19: 1.0000 - dense_1_accuracy_20: 1.0000 - dense_1_accuracy_21: 1.0000 - dense_1_accuracy_22: 1.0000 - dense_1_accuracy_23: 1.0000 - dense_1_accuracy_24: 1.0000 - dense_1_accuracy_25: 1.0000 - dense_1_accuracy_26: 1.0000 - dense_1_accuracy_27: 1.0000 - dense_1_accuracy_28: 0.9833 - dense_1_accuracy_29: 0.0000e+00
Epoch 63/100
60/60 [==============================] - 0s 1ms/step - loss: 9.3869 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.6167 - dense_1_accuracy_2: 0.8833 - dense_1_accuracy_3: 0.9667 - dense_1_accuracy_4: 0.9833 - dense_1_accuracy_5: 1.0000 - dense_1_accuracy_6: 1.0000 - dense_1_accuracy_7: 1.0000 - dense_1_accuracy_8: 1.0000 - dense_1_accuracy_9: 1.0000 - dense_1_accuracy_10: 1.0000 - dense_1_accuracy_11: 1.0000 - dense_1_accuracy_12: 1.0000 - dense_1_accuracy_13: 1.0000 - dense_1_accuracy_14: 1.0000 - dense_1_accuracy_15: 1.0000 - dense_1_accuracy_16: 1.0000 - dense_1_accuracy_17: 1.0000 - dense_1_accuracy_18: 1.0000 - dense_1_accuracy_19: 1.0000 - dense_1_accuracy_20: 1.0000 - dense_1_accuracy_21: 1.0000 - dense_1_accuracy_22: 1.0000 - dense_1_accuracy_23: 1.0000 - dense_1_accuracy_24: 1.0000 - dense_1_accuracy_25: 1.0000 - dense_1_accuracy_26: 1.0000 - dense_1_accuracy_27: 1.0000 - dense_1_accuracy_28: 0.9833 - dense_1_accuracy_29: 0.0000e+00
Epoch 64/100
60/60 [==============================] - 0s 1ms/step - loss: 9.2721 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.6167 - dense_1_accuracy_2: 0.8833 - dense_1_accuracy_3: 0.9667 - dense_1_accuracy_4: 0.9833 - dense_1_accuracy_5: 1.0000 - dense_1_accuracy_6: 1.0000 - dense_1_accuracy_7: 1.0000 - dense_1_accuracy_8: 1.0000 - dense_1_accuracy_9: 1.0000 - dense_1_accuracy_10: 1.0000 - dense_1_accuracy_11: 1.0000 - dense_1_accuracy_12: 1.0000 - dense_1_accuracy_13: 1.0000 - dense_1_accuracy_14: 1.0000 - dense_1_accuracy_15: 1.0000 - dense_1_accuracy_16: 1.0000 - dense_1_accuracy_17: 1.0000 - dense_1_accuracy_18: 1.0000 - dense_1_accuracy_19: 1.0000 - dense_1_accuracy_20: 1.0000 - dense_1_accuracy_21: 1.0000 - dense_1_accuracy_22: 1.0000 - dense_1_accuracy_23: 1.0000 - dense_1_accuracy_24: 1.0000 - dense_1_accuracy_25: 1.0000 - dense_1_accuracy_26: 1.0000 - dense_1_accuracy_27: 1.0000 - dense_1_accuracy_28: 1.0000 - dense_1_accuracy_29: 0.0000e+00
Epoch 65/100
60/60 [==============================] - 0s 1ms/step - loss: 9.1552 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.6167 - dense_1_accuracy_2: 0.8833 - dense_1_accuracy_3: 0.9833 - dense_1_accuracy_4: 0.9833 - dense_1_accuracy_5: 1.0000 - dense_1_accuracy_6: 1.0000 - dense_1_accuracy_7: 1.0000 - dense_1_accuracy_8: 1.0000 - dense_1_accuracy_9: 1.0000 - dense_1_accuracy_10: 1.0000 - dense_1_accuracy_11: 1.0000 - dense_1_accuracy_12: 1.0000 - dense_1_accuracy_13: 1.0000 - dense_1_accuracy_14: 1.0000 - dense_1_accuracy_15: 1.0000 - dense_1_accuracy_16: 1.0000 - dense_1_accuracy_17: 1.0000 - dense_1_accuracy_18: 1.0000 - dense_1_accuracy_19: 1.0000 - dense_1_accuracy_20: 1.0000 - dense_1_accuracy_21: 1.0000 - dense_1_accuracy_22: 1.0000 - dense_1_accuracy_23: 1.0000 - dense_1_accuracy_24: 1.0000 - dense_1_accuracy_25: 1.0000 - dense_1_accuracy_26: 1.0000 - dense_1_accuracy_27: 1.0000 - dense_1_accuracy_28: 1.0000 - dense_1_accuracy_29: 0.0000e+00
Epoch 66/100
60/60 [==============================] - 0s 1ms/step - loss: 9.0480 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.6167 - dense_1_accuracy_2: 0.8833 - dense_1_accuracy_3: 0.9833 - dense_1_accuracy_4: 0.9833 - dense_1_accuracy_5: 1.0000 - dense_1_accuracy_6: 1.0000 - dense_1_accuracy_7: 1.0000 - dense_1_accuracy_8: 1.0000 - dense_1_accuracy_9: 1.0000 - dense_1_accuracy_10: 1.0000 - dense_1_accuracy_11: 1.0000 - dense_1_accuracy_12: 1.0000 - dense_1_accuracy_13: 1.0000 - dense_1_accuracy_14: 1.0000 - dense_1_accuracy_15: 1.0000 - dense_1_accuracy_16: 1.0000 - dense_1_accuracy_17: 1.0000 - dense_1_accuracy_18: 1.0000 - dense_1_accuracy_19: 1.0000 - dense_1_accuracy_20: 1.0000 - dense_1_accuracy_21: 1.0000 - dense_1_accuracy_22: 1.0000 - dense_1_accuracy_23: 1.0000 - dense_1_accuracy_24: 1.0000 - dense_1_accuracy_25: 1.0000 - dense_1_accuracy_26: 1.0000 - dense_1_accuracy_27: 1.0000 - dense_1_accuracy_28: 1.0000 - dense_1_accuracy_29: 0.0000e+00
Epoch 67/100
60/60 [==============================] - 0s 1ms/step - loss: 8.9713 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.6167 - dense_1_accuracy_2: 0.8833 - dense_1_accuracy_3: 0.9833 - dense_1_accuracy_4: 0.9833 - dense_1_accuracy_5: 1.0000 - dense_1_accuracy_6: 1.0000 - dense_1_accuracy_7: 1.0000 - dense_1_accuracy_8: 1.0000 - dense_1_accuracy_9: 1.0000 - dense_1_accuracy_10: 1.0000 - dense_1_accuracy_11: 1.0000 - dense_1_accuracy_12: 1.0000 - dense_1_accuracy_13: 1.0000 - dense_1_accuracy_14: 1.0000 - dense_1_accuracy_15: 1.0000 - dense_1_accuracy_16: 1.0000 - dense_1_accuracy_17: 1.0000 - dense_1_accuracy_18: 1.0000 - dense_1_accuracy_19: 1.0000 - dense_1_accuracy_20: 1.0000 - dense_1_accuracy_21: 1.0000 - dense_1_accuracy_22: 1.0000 - dense_1_accuracy_23: 1.0000 - dense_1_accuracy_24: 1.0000 - dense_1_accuracy_25: 1.0000 - dense_1_accuracy_26: 1.0000 - dense_1_accuracy_27: 1.0000 - dense_1_accuracy_28: 1.0000 - dense_1_accuracy_29: 0.0000e+00
Epoch 68/100
60/60 [==============================] - 0s 1ms/step - loss: 8.8916 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.6167 - dense_1_accuracy_2: 0.8833 - dense_1_accuracy_3: 0.9833 - dense_1_accuracy_4: 0.9833 - dense_1_accuracy_5: 1.0000 - dense_1_accuracy_6: 1.0000 - dense_1_accuracy_7: 1.0000 - dense_1_accuracy_8: 1.0000 - dense_1_accuracy_9: 1.0000 - dense_1_accuracy_10: 1.0000 - dense_1_accuracy_11: 1.0000 - dense_1_accuracy_12: 1.0000 - dense_1_accuracy_13: 1.0000 - dense_1_accuracy_14: 1.0000 - dense_1_accuracy_15: 1.0000 - dense_1_accuracy_16: 1.0000 - dense_1_accuracy_17: 1.0000 - dense_1_accuracy_18: 1.0000 - dense_1_accuracy_19: 1.0000 - dense_1_accuracy_20: 1.0000 - dense_1_accuracy_21: 1.0000 - dense_1_accuracy_22: 1.0000 - dense_1_accuracy_23: 1.0000 - dense_1_accuracy_24: 1.0000 - dense_1_accuracy_25: 1.0000 - dense_1_accuracy_26: 1.0000 - dense_1_accuracy_27: 1.0000 - dense_1_accuracy_28: 0.9833 - dense_1_accuracy_29: 0.0000e+00
Epoch 69/100
60/60 [==============================] - 0s 1ms/step - loss: 8.8817 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.6167 - dense_1_accuracy_2: 0.8833 - dense_1_accuracy_3: 0.9833 - dense_1_accuracy_4: 0.9833 - dense_1_accuracy_5: 1.0000 - dense_1_accuracy_6: 1.0000 - dense_1_accuracy_7: 1.0000 - dense_1_accuracy_8: 1.0000 - dense_1_accuracy_9: 1.0000 - dense_1_accuracy_10: 1.0000 - dense_1_accuracy_11: 1.0000 - dense_1_accuracy_12: 1.0000 - dense_1_accuracy_13: 1.0000 - dense_1_accuracy_14: 1.0000 - dense_1_accuracy_15: 1.0000 - dense_1_accuracy_16: 1.0000 - dense_1_accuracy_17: 1.0000 - dense_1_accuracy_18: 1.0000 - dense_1_accuracy_19: 1.0000 - dense_1_accuracy_20: 1.0000 - dense_1_accuracy_21: 1.0000 - dense_1_accuracy_22: 1.0000 - dense_1_accuracy_23: 1.0000 - dense_1_accuracy_24: 1.0000 - dense_1_accuracy_25: 1.0000 - dense_1_accuracy_26: 1.0000 - dense_1_accuracy_27: 1.0000 - dense_1_accuracy_28: 0.9833 - dense_1_accuracy_29: 0.0000e+00
Epoch 70/100
60/60 [==============================] - 0s 1ms/step - loss: 8.7221 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.6167 - dense_1_accuracy_2: 0.8833 - dense_1_accuracy_3: 0.9833 - dense_1_accuracy_4: 0.9833 - dense_1_accuracy_5: 1.0000 - dense_1_accuracy_6: 1.0000 - dense_1_accuracy_7: 1.0000 - dense_1_accuracy_8: 1.0000 - dense_1_accuracy_9: 1.0000 - dense_1_accuracy_10: 1.0000 - dense_1_accuracy_11: 1.0000 - dense_1_accuracy_12: 1.0000 - dense_1_accuracy_13: 1.0000 - dense_1_accuracy_14: 1.0000 - dense_1_accuracy_15: 1.0000 - dense_1_accuracy_16: 1.0000 - dense_1_accuracy_17: 1.0000 - dense_1_accuracy_18: 1.0000 - dense_1_accuracy_19: 1.0000 - dense_1_accuracy_20: 1.0000 - dense_1_accuracy_21: 1.0000 - dense_1_accuracy_22: 1.0000 - dense_1_accuracy_23: 1.0000 - dense_1_accuracy_24: 1.0000 - dense_1_accuracy_25: 1.0000 - dense_1_accuracy_26: 1.0000 - dense_1_accuracy_27: 1.0000 - dense_1_accuracy_28: 0.9833 - dense_1_accuracy_29: 0.0000e+00
Epoch 71/100
60/60 [==============================] - 0s 1ms/step - loss: 8.5989 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.6333 - dense_1_accuracy_2: 0.8833 - dense_1_accuracy_3: 0.9833 - dense_1_accuracy_4: 0.9833 - dense_1_accuracy_5: 1.0000 - dense_1_accuracy_6: 1.0000 - dense_1_accuracy_7: 1.0000 - dense_1_accuracy_8: 1.0000 - dense_1_accuracy_9: 1.0000 - dense_1_accuracy_10: 1.0000 - dense_1_accuracy_11: 1.0000 - dense_1_accuracy_12: 1.0000 - dense_1_accuracy_13: 1.0000 - dense_1_accuracy_14: 1.0000 - dense_1_accuracy_15: 1.0000 - dense_1_accuracy_16: 1.0000 - dense_1_accuracy_17: 1.0000 - dense_1_accuracy_18: 1.0000 - dense_1_accuracy_19: 1.0000 - dense_1_accuracy_20: 1.0000 - dense_1_accuracy_21: 1.0000 - dense_1_accuracy_22: 1.0000 - dense_1_accuracy_23: 1.0000 - dense_1_accuracy_24: 1.0000 - dense_1_accuracy_25: 1.0000 - dense_1_accuracy_26: 1.0000 - dense_1_accuracy_27: 1.0000 - dense_1_accuracy_28: 0.9833 - dense_1_accuracy_29: 0.0000e+00
Epoch 72/100
60/60 [==============================] - 0s 1ms/step - loss: 8.6101 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.6333 - dense_1_accuracy_2: 0.8833 - dense_1_accuracy_3: 0.9833 - dense_1_accuracy_4: 0.9833 - dense_1_accuracy_5: 1.0000 - dense_1_accuracy_6: 1.0000 - dense_1_accuracy_7: 1.0000 - dense_1_accuracy_8: 1.0000 - dense_1_accuracy_9: 1.0000 - dense_1_accuracy_10: 1.0000 - dense_1_accuracy_11: 1.0000 - dense_1_accuracy_12: 1.0000 - dense_1_accuracy_13: 1.0000 - dense_1_accuracy_14: 1.0000 - dense_1_accuracy_15: 1.0000 - dense_1_accuracy_16: 1.0000 - dense_1_accuracy_17: 1.0000 - dense_1_accuracy_18: 1.0000 - dense_1_accuracy_19: 1.0000 - dense_1_accuracy_20: 1.0000 - dense_1_accuracy_21: 1.0000 - dense_1_accuracy_22: 1.0000 - dense_1_accuracy_23: 1.0000 - dense_1_accuracy_24: 1.0000 - dense_1_accuracy_25: 1.0000 - dense_1_accuracy_26: 1.0000 - dense_1_accuracy_27: 1.0000 - dense_1_accuracy_28: 1.0000 - dense_1_accuracy_29: 0.0000e+00
Epoch 73/100
60/60 [==============================] - 0s 1ms/step - loss: 8.4869 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.6333 - dense_1_accuracy_2: 0.8833 - dense_1_accuracy_3: 0.9833 - dense_1_accuracy_4: 0.9833 - dense_1_accuracy_5: 1.0000 - dense_1_accuracy_6: 1.0000 - dense_1_accuracy_7: 1.0000 - dense_1_accuracy_8: 1.0000 - dense_1_accuracy_9: 1.0000 - dense_1_accuracy_10: 1.0000 - dense_1_accuracy_11: 1.0000 - dense_1_accuracy_12: 1.0000 - dense_1_accuracy_13: 1.0000 - dense_1_accuracy_14: 1.0000 - dense_1_accuracy_15: 1.0000 - dense_1_accuracy_16: 1.0000 - dense_1_accuracy_17: 1.0000 - dense_1_accuracy_18: 1.0000 - dense_1_accuracy_19: 1.0000 - dense_1_accuracy_20: 1.0000 - dense_1_accuracy_21: 1.0000 - dense_1_accuracy_22: 1.0000 - dense_1_accuracy_23: 1.0000 - dense_1_accuracy_24: 1.0000 - dense_1_accuracy_25: 1.0000 - dense_1_accuracy_26: 1.0000 - dense_1_accuracy_27: 1.0000 - dense_1_accuracy_28: 1.0000 - dense_1_accuracy_29: 0.0000e+00
Epoch 74/100
60/60 [==============================] - 0s 1ms/step - loss: 8.6417 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.6333 - dense_1_accuracy_2: 0.8833 - dense_1_accuracy_3: 0.9833 - dense_1_accuracy_4: 0.9833 - dense_1_accuracy_5: 1.0000 - dense_1_accuracy_6: 1.0000 - dense_1_accuracy_7: 1.0000 - dense_1_accuracy_8: 1.0000 - dense_1_accuracy_9: 1.0000 - dense_1_accuracy_10: 1.0000 - dense_1_accuracy_11: 1.0000 - dense_1_accuracy_12: 1.0000 - dense_1_accuracy_13: 1.0000 - dense_1_accuracy_14: 1.0000 - dense_1_accuracy_15: 1.0000 - dense_1_accuracy_16: 1.0000 - dense_1_accuracy_17: 1.0000 - dense_1_accuracy_18: 1.0000 - dense_1_accuracy_19: 1.0000 - dense_1_accuracy_20: 1.0000 - dense_1_accuracy_21: 1.0000 - dense_1_accuracy_22: 1.0000 - dense_1_accuracy_23: 0.9833 - dense_1_accuracy_24: 1.0000 - dense_1_accuracy_25: 1.0000 - dense_1_accuracy_26: 1.0000 - dense_1_accuracy_27: 1.0000 - dense_1_accuracy_28: 1.0000 - dense_1_accuracy_29: 0.0000e+00
Epoch 75/100
60/60 [==============================] - 0s 1ms/step - loss: 8.3961 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.6333 - dense_1_accuracy_2: 0.9000 - dense_1_accuracy_3: 1.0000 - dense_1_accuracy_4: 0.9833 - dense_1_accuracy_5: 1.0000 - dense_1_accuracy_6: 1.0000 - dense_1_accuracy_7: 1.0000 - dense_1_accuracy_8: 1.0000 - dense_1_accuracy_9: 1.0000 - dense_1_accuracy_10: 1.0000 - dense_1_accuracy_11: 1.0000 - dense_1_accuracy_12: 1.0000 - dense_1_accuracy_13: 1.0000 - dense_1_accuracy_14: 1.0000 - dense_1_accuracy_15: 1.0000 - dense_1_accuracy_16: 1.0000 - dense_1_accuracy_17: 1.0000 - dense_1_accuracy_18: 1.0000 - dense_1_accuracy_19: 1.0000 - dense_1_accuracy_20: 1.0000 - dense_1_accuracy_21: 1.0000 - dense_1_accuracy_22: 1.0000 - dense_1_accuracy_23: 1.0000 - dense_1_accuracy_24: 1.0000 - dense_1_accuracy_25: 1.0000 - dense_1_accuracy_26: 1.0000 - dense_1_accuracy_27: 1.0000 - dense_1_accuracy_28: 1.0000 - dense_1_accuracy_29: 0.0000e+00
Epoch 76/100
60/60 [==============================] - 0s 1ms/step - loss: 8.4834 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.6333 - dense_1_accuracy_2: 0.9000 - dense_1_accuracy_3: 1.0000 - dense_1_accuracy_4: 0.9833 - dense_1_accuracy_5: 1.0000 - dense_1_accuracy_6: 1.0000 - dense_1_accuracy_7: 1.0000 - dense_1_accuracy_8: 1.0000 - dense_1_accuracy_9: 1.0000 - dense_1_accuracy_10: 1.0000 - dense_1_accuracy_11: 1.0000 - dense_1_accuracy_12: 1.0000 - dense_1_accuracy_13: 1.0000 - dense_1_accuracy_14: 1.0000 - dense_1_accuracy_15: 1.0000 - dense_1_accuracy_16: 1.0000 - dense_1_accuracy_17: 1.0000 - dense_1_accuracy_18: 1.0000 - dense_1_accuracy_19: 1.0000 - dense_1_accuracy_20: 1.0000 - dense_1_accuracy_21: 1.0000 - dense_1_accuracy_22: 1.0000 - dense_1_accuracy_23: 1.0000 - dense_1_accuracy_24: 1.0000 - dense_1_accuracy_25: 1.0000 - dense_1_accuracy_26: 1.0000 - dense_1_accuracy_27: 1.0000 - dense_1_accuracy_28: 1.0000 - dense_1_accuracy_29: 0.0000e+00
Epoch 77/100
60/60 [==============================] - 0s 1ms/step - loss: 8.3441 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.6333 - dense_1_accuracy_2: 0.9000 - dense_1_accuracy_3: 1.0000 - dense_1_accuracy_4: 0.9833 - dense_1_accuracy_5: 1.0000 - dense_1_accuracy_6: 1.0000 - dense_1_accuracy_7: 1.0000 - dense_1_accuracy_8: 1.0000 - dense_1_accuracy_9: 1.0000 - dense_1_accuracy_10: 1.0000 - dense_1_accuracy_11: 1.0000 - dense_1_accuracy_12: 1.0000 - dense_1_accuracy_13: 1.0000 - dense_1_accuracy_14: 1.0000 - dense_1_accuracy_15: 1.0000 - dense_1_accuracy_16: 1.0000 - dense_1_accuracy_17: 1.0000 - dense_1_accuracy_18: 1.0000 - dense_1_accuracy_19: 1.0000 - dense_1_accuracy_20: 1.0000 - dense_1_accuracy_21: 1.0000 - dense_1_accuracy_22: 1.0000 - dense_1_accuracy_23: 1.0000 - dense_1_accuracy_24: 1.0000 - dense_1_accuracy_25: 1.0000 - dense_1_accuracy_26: 1.0000 - dense_1_accuracy_27: 1.0000 - dense_1_accuracy_28: 1.0000 - dense_1_accuracy_29: 0.0000e+00
Epoch 78/100
60/60 [==============================] - 0s 1ms/step - loss: 8.1681 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.6333 - dense_1_accuracy_2: 0.9000 - dense_1_accuracy_3: 1.0000 - dense_1_accuracy_4: 0.9833 - dense_1_accuracy_5: 1.0000 - dense_1_accuracy_6: 1.0000 - dense_1_accuracy_7: 1.0000 - dense_1_accuracy_8: 1.0000 - dense_1_accuracy_9: 1.0000 - dense_1_accuracy_10: 1.0000 - dense_1_accuracy_11: 1.0000 - dense_1_accuracy_12: 1.0000 - dense_1_accuracy_13: 1.0000 - dense_1_accuracy_14: 1.0000 - dense_1_accuracy_15: 1.0000 - dense_1_accuracy_16: 1.0000 - dense_1_accuracy_17: 1.0000 - dense_1_accuracy_18: 1.0000 - dense_1_accuracy_19: 1.0000 - dense_1_accuracy_20: 1.0000 - dense_1_accuracy_21: 1.0000 - dense_1_accuracy_22: 1.0000 - dense_1_accuracy_23: 1.0000 - dense_1_accuracy_24: 1.0000 - dense_1_accuracy_25: 1.0000 - dense_1_accuracy_26: 1.0000 - dense_1_accuracy_27: 1.0000 - dense_1_accuracy_28: 1.0000 - dense_1_accuracy_29: 0.0000e+00
Epoch 79/100
60/60 [==============================] - 0s 1ms/step - loss: 8.2874 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.6333 - dense_1_accuracy_2: 0.9000 - dense_1_accuracy_3: 1.0000 - dense_1_accuracy_4: 1.0000 - dense_1_accuracy_5: 1.0000 - dense_1_accuracy_6: 1.0000 - dense_1_accuracy_7: 1.0000 - dense_1_accuracy_8: 1.0000 - dense_1_accuracy_9: 1.0000 - dense_1_accuracy_10: 1.0000 - dense_1_accuracy_11: 1.0000 - dense_1_accuracy_12: 1.0000 - dense_1_accuracy_13: 1.0000 - dense_1_accuracy_14: 1.0000 - dense_1_accuracy_15: 1.0000 - dense_1_accuracy_16: 1.0000 - dense_1_accuracy_17: 1.0000 - dense_1_accuracy_18: 1.0000 - dense_1_accuracy_19: 1.0000 - dense_1_accuracy_20: 1.0000 - dense_1_accuracy_21: 1.0000 - dense_1_accuracy_22: 1.0000 - dense_1_accuracy_23: 1.0000 - dense_1_accuracy_24: 1.0000 - dense_1_accuracy_25: 1.0000 - dense_1_accuracy_26: 1.0000 - dense_1_accuracy_27: 1.0000 - dense_1_accuracy_28: 1.0000 - dense_1_accuracy_29: 0.0000e+00
Epoch 80/100
60/60 [==============================] - 0s 1ms/step - loss: 8.1880 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.6333 - dense_1_accuracy_2: 0.9000 - dense_1_accuracy_3: 1.0000 - dense_1_accuracy_4: 1.0000 - dense_1_accuracy_5: 1.0000 - dense_1_accuracy_6: 1.0000 - dense_1_accuracy_7: 1.0000 - dense_1_accuracy_8: 1.0000 - dense_1_accuracy_9: 1.0000 - dense_1_accuracy_10: 1.0000 - dense_1_accuracy_11: 1.0000 - dense_1_accuracy_12: 1.0000 - dense_1_accuracy_13: 1.0000 - dense_1_accuracy_14: 1.0000 - dense_1_accuracy_15: 1.0000 - dense_1_accuracy_16: 1.0000 - dense_1_accuracy_17: 1.0000 - dense_1_accuracy_18: 1.0000 - dense_1_accuracy_19: 1.0000 - dense_1_accuracy_20: 1.0000 - dense_1_accuracy_21: 1.0000 - dense_1_accuracy_22: 1.0000 - dense_1_accuracy_23: 1.0000 - dense_1_accuracy_24: 1.0000 - dense_1_accuracy_25: 1.0000 - dense_1_accuracy_26: 1.0000 - dense_1_accuracy_27: 1.0000 - dense_1_accuracy_28: 1.0000 - dense_1_accuracy_29: 0.0000e+00
Epoch 81/100
60/60 [==============================] - 0s 1ms/step - loss: 8.1446 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.6333 - dense_1_accuracy_2: 0.9000 - dense_1_accuracy_3: 1.0000 - dense_1_accuracy_4: 1.0000 - dense_1_accuracy_5: 1.0000 - dense_1_accuracy_6: 1.0000 - dense_1_accuracy_7: 1.0000 - dense_1_accuracy_8: 1.0000 - dense_1_accuracy_9: 1.0000 - dense_1_accuracy_10: 1.0000 - dense_1_accuracy_11: 1.0000 - dense_1_accuracy_12: 1.0000 - dense_1_accuracy_13: 1.0000 - dense_1_accuracy_14: 1.0000 - dense_1_accuracy_15: 1.0000 - dense_1_accuracy_16: 1.0000 - dense_1_accuracy_17: 1.0000 - dense_1_accuracy_18: 1.0000 - dense_1_accuracy_19: 1.0000 - dense_1_accuracy_20: 1.0000 - dense_1_accuracy_21: 1.0000 - dense_1_accuracy_22: 1.0000 - dense_1_accuracy_23: 1.0000 - dense_1_accuracy_24: 1.0000 - dense_1_accuracy_25: 1.0000 - dense_1_accuracy_26: 1.0000 - dense_1_accuracy_27: 1.0000 - dense_1_accuracy_28: 1.0000 - dense_1_accuracy_29: 0.0000e+00
Epoch 82/100
60/60 [==============================] - 0s 1ms/step - loss: 8.0556 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.6333 - dense_1_accuracy_2: 0.9000 - dense_1_accuracy_3: 1.0000 - dense_1_accuracy_4: 1.0000 - dense_1_accuracy_5: 1.0000 - dense_1_accuracy_6: 1.0000 - dense_1_accuracy_7: 1.0000 - dense_1_accuracy_8: 1.0000 - dense_1_accuracy_9: 1.0000 - dense_1_accuracy_10: 1.0000 - dense_1_accuracy_11: 1.0000 - dense_1_accuracy_12: 1.0000 - dense_1_accuracy_13: 1.0000 - dense_1_accuracy_14: 1.0000 - dense_1_accuracy_15: 1.0000 - dense_1_accuracy_16: 1.0000 - dense_1_accuracy_17: 1.0000 - dense_1_accuracy_18: 1.0000 - dense_1_accuracy_19: 1.0000 - dense_1_accuracy_20: 1.0000 - dense_1_accuracy_21: 1.0000 - dense_1_accuracy_22: 1.0000 - dense_1_accuracy_23: 1.0000 - dense_1_accuracy_24: 1.0000 - dense_1_accuracy_25: 1.0000 - dense_1_accuracy_26: 1.0000 - dense_1_accuracy_27: 1.0000 - dense_1_accuracy_28: 1.0000 - dense_1_accuracy_29: 0.0000e+00
Epoch 83/100
60/60 [==============================] - 0s 1ms/step - loss: 7.9504 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.6333 - dense_1_accuracy_2: 0.9167 - dense_1_accuracy_3: 1.0000 - dense_1_accuracy_4: 1.0000 - dense_1_accuracy_5: 1.0000 - dense_1_accuracy_6: 1.0000 - dense_1_accuracy_7: 1.0000 - dense_1_accuracy_8: 1.0000 - dense_1_accuracy_9: 1.0000 - dense_1_accuracy_10: 1.0000 - dense_1_accuracy_11: 1.0000 - dense_1_accuracy_12: 1.0000 - dense_1_accuracy_13: 1.0000 - dense_1_accuracy_14: 1.0000 - dense_1_accuracy_15: 1.0000 - dense_1_accuracy_16: 1.0000 - dense_1_accuracy_17: 1.0000 - dense_1_accuracy_18: 1.0000 - dense_1_accuracy_19: 1.0000 - dense_1_accuracy_20: 1.0000 - dense_1_accuracy_21: 1.0000 - dense_1_accuracy_22: 1.0000 - dense_1_accuracy_23: 1.0000 - dense_1_accuracy_24: 1.0000 - dense_1_accuracy_25: 1.0000 - dense_1_accuracy_26: 1.0000 - dense_1_accuracy_27: 1.0000 - dense_1_accuracy_28: 1.0000 - dense_1_accuracy_29: 0.0000e+00
Epoch 84/100
60/60 [==============================] - 0s 1ms/step - loss: 7.8864 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.6333 - dense_1_accuracy_2: 0.9167 - dense_1_accuracy_3: 1.0000 - dense_1_accuracy_4: 1.0000 - dense_1_accuracy_5: 1.0000 - dense_1_accuracy_6: 1.0000 - dense_1_accuracy_7: 1.0000 - dense_1_accuracy_8: 1.0000 - dense_1_accuracy_9: 1.0000 - dense_1_accuracy_10: 1.0000 - dense_1_accuracy_11: 1.0000 - dense_1_accuracy_12: 1.0000 - dense_1_accuracy_13: 1.0000 - dense_1_accuracy_14: 1.0000 - dense_1_accuracy_15: 1.0000 - dense_1_accuracy_16: 1.0000 - dense_1_accuracy_17: 1.0000 - dense_1_accuracy_18: 1.0000 - dense_1_accuracy_19: 1.0000 - dense_1_accuracy_20: 1.0000 - dense_1_accuracy_21: 1.0000 - dense_1_accuracy_22: 1.0000 - dense_1_accuracy_23: 1.0000 - dense_1_accuracy_24: 1.0000 - dense_1_accuracy_25: 1.0000 - dense_1_accuracy_26: 1.0000 - dense_1_accuracy_27: 1.0000 - dense_1_accuracy_28: 1.0000 - dense_1_accuracy_29: 0.0000e+00
Epoch 85/100
60/60 [==============================] - 0s 1ms/step - loss: 7.8184 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.6333 - dense_1_accuracy_2: 0.9167 - dense_1_accuracy_3: 1.0000 - dense_1_accuracy_4: 1.0000 - dense_1_accuracy_5: 1.0000 - dense_1_accuracy_6: 1.0000 - dense_1_accuracy_7: 1.0000 - dense_1_accuracy_8: 1.0000 - dense_1_accuracy_9: 1.0000 - dense_1_accuracy_10: 1.0000 - dense_1_accuracy_11: 1.0000 - dense_1_accuracy_12: 1.0000 - dense_1_accuracy_13: 1.0000 - dense_1_accuracy_14: 1.0000 - dense_1_accuracy_15: 1.0000 - dense_1_accuracy_16: 1.0000 - dense_1_accuracy_17: 1.0000 - dense_1_accuracy_18: 1.0000 - dense_1_accuracy_19: 1.0000 - dense_1_accuracy_20: 1.0000 - dense_1_accuracy_21: 1.0000 - dense_1_accuracy_22: 1.0000 - dense_1_accuracy_23: 1.0000 - dense_1_accuracy_24: 1.0000 - dense_1_accuracy_25: 1.0000 - dense_1_accuracy_26: 1.0000 - dense_1_accuracy_27: 1.0000 - dense_1_accuracy_28: 1.0000 - dense_1_accuracy_29: 0.0000e+00
Epoch 86/100
60/60 [==============================] - 0s 1ms/step - loss: 8.2067 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.6333 - dense_1_accuracy_2: 0.9167 - dense_1_accuracy_3: 1.0000 - dense_1_accuracy_4: 1.0000 - dense_1_accuracy_5: 1.0000 - dense_1_accuracy_6: 1.0000 - dense_1_accuracy_7: 1.0000 - dense_1_accuracy_8: 1.0000 - dense_1_accuracy_9: 1.0000 - dense_1_accuracy_10: 1.0000 - dense_1_accuracy_11: 1.0000 - dense_1_accuracy_12: 1.0000 - dense_1_accuracy_13: 1.0000 - dense_1_accuracy_14: 1.0000 - dense_1_accuracy_15: 1.0000 - dense_1_accuracy_16: 1.0000 - dense_1_accuracy_17: 1.0000 - dense_1_accuracy_18: 1.0000 - dense_1_accuracy_19: 1.0000 - dense_1_accuracy_20: 1.0000 - dense_1_accuracy_21: 1.0000 - dense_1_accuracy_22: 1.0000 - dense_1_accuracy_23: 1.0000 - dense_1_accuracy_24: 1.0000 - dense_1_accuracy_25: 1.0000 - dense_1_accuracy_26: 0.9667 - dense_1_accuracy_27: 0.9833 - dense_1_accuracy_28: 1.0000 - dense_1_accuracy_29: 0.0000e+00
Epoch 87/100
60/60 [==============================] - 0s 1ms/step - loss: 7.6905 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.6500 - dense_1_accuracy_2: 0.9167 - dense_1_accuracy_3: 1.0000 - dense_1_accuracy_4: 1.0000 - dense_1_accuracy_5: 1.0000 - dense_1_accuracy_6: 1.0000 - dense_1_accuracy_7: 1.0000 - dense_1_accuracy_8: 1.0000 - dense_1_accuracy_9: 1.0000 - dense_1_accuracy_10: 1.0000 - dense_1_accuracy_11: 1.0000 - dense_1_accuracy_12: 1.0000 - dense_1_accuracy_13: 1.0000 - dense_1_accuracy_14: 1.0000 - dense_1_accuracy_15: 1.0000 - dense_1_accuracy_16: 1.0000 - dense_1_accuracy_17: 1.0000 - dense_1_accuracy_18: 1.0000 - dense_1_accuracy_19: 1.0000 - dense_1_accuracy_20: 1.0000 - dense_1_accuracy_21: 1.0000 - dense_1_accuracy_22: 1.0000 - dense_1_accuracy_23: 1.0000 - dense_1_accuracy_24: 1.0000 - dense_1_accuracy_25: 1.0000 - dense_1_accuracy_26: 1.0000 - dense_1_accuracy_27: 0.9833 - dense_1_accuracy_28: 1.0000 - dense_1_accuracy_29: 0.0000e+00
Epoch 88/100
60/60 [==============================] - 0s 1ms/step - loss: 8.3132 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.6500 - dense_1_accuracy_2: 0.9167 - dense_1_accuracy_3: 1.0000 - dense_1_accuracy_4: 1.0000 - dense_1_accuracy_5: 1.0000 - dense_1_accuracy_6: 1.0000 - dense_1_accuracy_7: 1.0000 - dense_1_accuracy_8: 1.0000 - dense_1_accuracy_9: 1.0000 - dense_1_accuracy_10: 1.0000 - dense_1_accuracy_11: 1.0000 - dense_1_accuracy_12: 1.0000 - dense_1_accuracy_13: 1.0000 - dense_1_accuracy_14: 1.0000 - dense_1_accuracy_15: 1.0000 - dense_1_accuracy_16: 1.0000 - dense_1_accuracy_17: 1.0000 - dense_1_accuracy_18: 1.0000 - dense_1_accuracy_19: 1.0000 - dense_1_accuracy_20: 1.0000 - dense_1_accuracy_21: 1.0000 - dense_1_accuracy_22: 1.0000 - dense_1_accuracy_23: 1.0000 - dense_1_accuracy_24: 0.9833 - dense_1_accuracy_25: 0.9667 - dense_1_accuracy_26: 1.0000 - dense_1_accuracy_27: 0.9833 - dense_1_accuracy_28: 0.9833 - dense_1_accuracy_29: 0.0000e+00
Epoch 89/100
60/60 [==============================] - 0s 1ms/step - loss: 7.8230 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.6500 - dense_1_accuracy_2: 0.9167 - dense_1_accuracy_3: 1.0000 - dense_1_accuracy_4: 1.0000 - dense_1_accuracy_5: 1.0000 - dense_1_accuracy_6: 1.0000 - dense_1_accuracy_7: 1.0000 - dense_1_accuracy_8: 1.0000 - dense_1_accuracy_9: 1.0000 - dense_1_accuracy_10: 1.0000 - dense_1_accuracy_11: 1.0000 - dense_1_accuracy_12: 1.0000 - dense_1_accuracy_13: 1.0000 - dense_1_accuracy_14: 1.0000 - dense_1_accuracy_15: 1.0000 - dense_1_accuracy_16: 1.0000 - dense_1_accuracy_17: 1.0000 - dense_1_accuracy_18: 1.0000 - dense_1_accuracy_19: 1.0000 - dense_1_accuracy_20: 1.0000 - dense_1_accuracy_21: 1.0000 - dense_1_accuracy_22: 1.0000 - dense_1_accuracy_23: 1.0000 - dense_1_accuracy_24: 1.0000 - dense_1_accuracy_25: 1.0000 - dense_1_accuracy_26: 1.0000 - dense_1_accuracy_27: 1.0000 - dense_1_accuracy_28: 1.0000 - dense_1_accuracy_29: 0.0000e+00
Epoch 90/100
60/60 [==============================] - 0s 1ms/step - loss: 8.0172 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.6500 - dense_1_accuracy_2: 0.9167 - dense_1_accuracy_3: 1.0000 - dense_1_accuracy_4: 1.0000 - dense_1_accuracy_5: 1.0000 - dense_1_accuracy_6: 1.0000 - dense_1_accuracy_7: 1.0000 - dense_1_accuracy_8: 1.0000 - dense_1_accuracy_9: 1.0000 - dense_1_accuracy_10: 1.0000 - dense_1_accuracy_11: 1.0000 - dense_1_accuracy_12: 1.0000 - dense_1_accuracy_13: 1.0000 - dense_1_accuracy_14: 1.0000 - dense_1_accuracy_15: 1.0000 - dense_1_accuracy_16: 1.0000 - dense_1_accuracy_17: 1.0000 - dense_1_accuracy_18: 1.0000 - dense_1_accuracy_19: 1.0000 - dense_1_accuracy_20: 1.0000 - dense_1_accuracy_21: 1.0000 - dense_1_accuracy_22: 1.0000 - dense_1_accuracy_23: 1.0000 - dense_1_accuracy_24: 1.0000 - dense_1_accuracy_25: 1.0000 - dense_1_accuracy_26: 1.0000 - dense_1_accuracy_27: 1.0000 - dense_1_accuracy_28: 1.0000 - dense_1_accuracy_29: 0.0000e+00
Epoch 91/100
60/60 [==============================] - 0s 1ms/step - loss: 7.5494 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.6500 - dense_1_accuracy_2: 0.9167 - dense_1_accuracy_3: 1.0000 - dense_1_accuracy_4: 1.0000 - dense_1_accuracy_5: 1.0000 - dense_1_accuracy_6: 1.0000 - dense_1_accuracy_7: 1.0000 - dense_1_accuracy_8: 1.0000 - dense_1_accuracy_9: 1.0000 - dense_1_accuracy_10: 1.0000 - dense_1_accuracy_11: 1.0000 - dense_1_accuracy_12: 1.0000 - dense_1_accuracy_13: 1.0000 - dense_1_accuracy_14: 1.0000 - dense_1_accuracy_15: 1.0000 - dense_1_accuracy_16: 1.0000 - dense_1_accuracy_17: 1.0000 - dense_1_accuracy_18: 1.0000 - dense_1_accuracy_19: 1.0000 - dense_1_accuracy_20: 1.0000 - dense_1_accuracy_21: 1.0000 - dense_1_accuracy_22: 1.0000 - dense_1_accuracy_23: 1.0000 - dense_1_accuracy_24: 1.0000 - dense_1_accuracy_25: 1.0000 - dense_1_accuracy_26: 1.0000 - dense_1_accuracy_27: 1.0000 - dense_1_accuracy_28: 0.9833 - dense_1_accuracy_29: 0.0000e+00
Epoch 92/100
60/60 [==============================] - 0s 1ms/step - loss: 8.0109 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.6500 - dense_1_accuracy_2: 0.9167 - dense_1_accuracy_3: 1.0000 - dense_1_accuracy_4: 1.0000 - dense_1_accuracy_5: 1.0000 - dense_1_accuracy_6: 1.0000 - dense_1_accuracy_7: 1.0000 - dense_1_accuracy_8: 1.0000 - dense_1_accuracy_9: 1.0000 - dense_1_accuracy_10: 1.0000 - dense_1_accuracy_11: 1.0000 - dense_1_accuracy_12: 1.0000 - dense_1_accuracy_13: 1.0000 - dense_1_accuracy_14: 1.0000 - dense_1_accuracy_15: 1.0000 - dense_1_accuracy_16: 1.0000 - dense_1_accuracy_17: 1.0000 - dense_1_accuracy_18: 1.0000 - dense_1_accuracy_19: 1.0000 - dense_1_accuracy_20: 1.0000 - dense_1_accuracy_21: 1.0000 - dense_1_accuracy_22: 1.0000 - dense_1_accuracy_23: 1.0000 - dense_1_accuracy_24: 1.0000 - dense_1_accuracy_25: 1.0000 - dense_1_accuracy_26: 1.0000 - dense_1_accuracy_27: 1.0000 - dense_1_accuracy_28: 1.0000 - dense_1_accuracy_29: 0.0000e+00
Epoch 93/100
60/60 [==============================] - 0s 1ms/step - loss: 7.7035 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.6500 - dense_1_accuracy_2: 0.9167 - dense_1_accuracy_3: 1.0000 - dense_1_accuracy_4: 1.0000 - dense_1_accuracy_5: 1.0000 - dense_1_accuracy_6: 1.0000 - dense_1_accuracy_7: 1.0000 - dense_1_accuracy_8: 1.0000 - dense_1_accuracy_9: 1.0000 - dense_1_accuracy_10: 1.0000 - dense_1_accuracy_11: 1.0000 - dense_1_accuracy_12: 1.0000 - dense_1_accuracy_13: 1.0000 - dense_1_accuracy_14: 1.0000 - dense_1_accuracy_15: 1.0000 - dense_1_accuracy_16: 1.0000 - dense_1_accuracy_17: 1.0000 - dense_1_accuracy_18: 1.0000 - dense_1_accuracy_19: 1.0000 - dense_1_accuracy_20: 1.0000 - dense_1_accuracy_21: 1.0000 - dense_1_accuracy_22: 1.0000 - dense_1_accuracy_23: 1.0000 - dense_1_accuracy_24: 1.0000 - dense_1_accuracy_25: 1.0000 - dense_1_accuracy_26: 1.0000 - dense_1_accuracy_27: 1.0000 - dense_1_accuracy_28: 1.0000 - dense_1_accuracy_29: 0.0000e+00
Epoch 94/100
60/60 [==============================] - 0s 1ms/step - loss: 7.4847 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.6833 - dense_1_accuracy_2: 0.9167 - dense_1_accuracy_3: 1.0000 - dense_1_accuracy_4: 1.0000 - dense_1_accuracy_5: 1.0000 - dense_1_accuracy_6: 1.0000 - dense_1_accuracy_7: 1.0000 - dense_1_accuracy_8: 1.0000 - dense_1_accuracy_9: 1.0000 - dense_1_accuracy_10: 1.0000 - dense_1_accuracy_11: 1.0000 - dense_1_accuracy_12: 1.0000 - dense_1_accuracy_13: 1.0000 - dense_1_accuracy_14: 1.0000 - dense_1_accuracy_15: 1.0000 - dense_1_accuracy_16: 1.0000 - dense_1_accuracy_17: 1.0000 - dense_1_accuracy_18: 1.0000 - dense_1_accuracy_19: 1.0000 - dense_1_accuracy_20: 1.0000 - dense_1_accuracy_21: 1.0000 - dense_1_accuracy_22: 1.0000 - dense_1_accuracy_23: 1.0000 - dense_1_accuracy_24: 1.0000 - dense_1_accuracy_25: 1.0000 - dense_1_accuracy_26: 1.0000 - dense_1_accuracy_27: 1.0000 - dense_1_accuracy_28: 1.0000 - dense_1_accuracy_29: 0.0000e+00
Epoch 95/100
60/60 [==============================] - 0s 1ms/step - loss: 7.7454 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.6833 - dense_1_accuracy_2: 0.9167 - dense_1_accuracy_3: 1.0000 - dense_1_accuracy_4: 1.0000 - dense_1_accuracy_5: 1.0000 - dense_1_accuracy_6: 1.0000 - dense_1_accuracy_7: 1.0000 - dense_1_accuracy_8: 1.0000 - dense_1_accuracy_9: 1.0000 - dense_1_accuracy_10: 1.0000 - dense_1_accuracy_11: 1.0000 - dense_1_accuracy_12: 1.0000 - dense_1_accuracy_13: 1.0000 - dense_1_accuracy_14: 1.0000 - dense_1_accuracy_15: 1.0000 - dense_1_accuracy_16: 1.0000 - dense_1_accuracy_17: 1.0000 - dense_1_accuracy_18: 1.0000 - dense_1_accuracy_19: 1.0000 - dense_1_accuracy_20: 1.0000 - dense_1_accuracy_21: 1.0000 - dense_1_accuracy_22: 1.0000 - dense_1_accuracy_23: 1.0000 - dense_1_accuracy_24: 1.0000 - dense_1_accuracy_25: 1.0000 - dense_1_accuracy_26: 1.0000 - dense_1_accuracy_27: 1.0000 - dense_1_accuracy_28: 1.0000 - dense_1_accuracy_29: 0.0000e+00
Epoch 96/100
60/60 [==============================] - 0s 1ms/step - loss: 7.4569 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.6833 - dense_1_accuracy_2: 0.9167 - dense_1_accuracy_3: 1.0000 - dense_1_accuracy_4: 1.0000 - dense_1_accuracy_5: 1.0000 - dense_1_accuracy_6: 1.0000 - dense_1_accuracy_7: 1.0000 - dense_1_accuracy_8: 1.0000 - dense_1_accuracy_9: 1.0000 - dense_1_accuracy_10: 1.0000 - dense_1_accuracy_11: 1.0000 - dense_1_accuracy_12: 1.0000 - dense_1_accuracy_13: 1.0000 - dense_1_accuracy_14: 1.0000 - dense_1_accuracy_15: 1.0000 - dense_1_accuracy_16: 1.0000 - dense_1_accuracy_17: 1.0000 - dense_1_accuracy_18: 1.0000 - dense_1_accuracy_19: 1.0000 - dense_1_accuracy_20: 1.0000 - dense_1_accuracy_21: 1.0000 - dense_1_accuracy_22: 1.0000 - dense_1_accuracy_23: 1.0000 - dense_1_accuracy_24: 1.0000 - dense_1_accuracy_25: 1.0000 - dense_1_accuracy_26: 1.0000 - dense_1_accuracy_27: 1.0000 - dense_1_accuracy_28: 1.0000 - dense_1_accuracy_29: 0.0000e+00
Epoch 97/100
60/60 [==============================] - 0s 1ms/step - loss: 7.4972 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.6667 - dense_1_accuracy_2: 0.9167 - dense_1_accuracy_3: 1.0000 - dense_1_accuracy_4: 1.0000 - dense_1_accuracy_5: 1.0000 - dense_1_accuracy_6: 1.0000 - dense_1_accuracy_7: 1.0000 - dense_1_accuracy_8: 1.0000 - dense_1_accuracy_9: 1.0000 - dense_1_accuracy_10: 1.0000 - dense_1_accuracy_11: 1.0000 - dense_1_accuracy_12: 1.0000 - dense_1_accuracy_13: 1.0000 - dense_1_accuracy_14: 1.0000 - dense_1_accuracy_15: 1.0000 - dense_1_accuracy_16: 1.0000 - dense_1_accuracy_17: 1.0000 - dense_1_accuracy_18: 1.0000 - dense_1_accuracy_19: 1.0000 - dense_1_accuracy_20: 1.0000 - dense_1_accuracy_21: 1.0000 - dense_1_accuracy_22: 1.0000 - dense_1_accuracy_23: 1.0000 - dense_1_accuracy_24: 1.0000 - dense_1_accuracy_25: 1.0000 - dense_1_accuracy_26: 1.0000 - dense_1_accuracy_27: 1.0000 - dense_1_accuracy_28: 1.0000 - dense_1_accuracy_29: 0.0000e+00
Epoch 98/100
60/60 [==============================] - 0s 1ms/step - loss: 7.6047 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.6667 - dense_1_accuracy_2: 0.9167 - dense_1_accuracy_3: 1.0000 - dense_1_accuracy_4: 1.0000 - dense_1_accuracy_5: 1.0000 - dense_1_accuracy_6: 1.0000 - dense_1_accuracy_7: 1.0000 - dense_1_accuracy_8: 1.0000 - dense_1_accuracy_9: 1.0000 - dense_1_accuracy_10: 1.0000 - dense_1_accuracy_11: 1.0000 - dense_1_accuracy_12: 1.0000 - dense_1_accuracy_13: 1.0000 - dense_1_accuracy_14: 1.0000 - dense_1_accuracy_15: 1.0000 - dense_1_accuracy_16: 1.0000 - dense_1_accuracy_17: 1.0000 - dense_1_accuracy_18: 1.0000 - dense_1_accuracy_19: 1.0000 - dense_1_accuracy_20: 1.0000 - dense_1_accuracy_21: 1.0000 - dense_1_accuracy_22: 1.0000 - dense_1_accuracy_23: 1.0000 - dense_1_accuracy_24: 1.0000 - dense_1_accuracy_25: 1.0000 - dense_1_accuracy_26: 1.0000 - dense_1_accuracy_27: 1.0000 - dense_1_accuracy_28: 1.0000 - dense_1_accuracy_29: 0.0000e+00
Epoch 99/100
60/60 [==============================] - 0s 1ms/step - loss: 7.3447 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.6833 - dense_1_accuracy_2: 0.9167 - dense_1_accuracy_3: 1.0000 - dense_1_accuracy_4: 1.0000 - dense_1_accuracy_5: 1.0000 - dense_1_accuracy_6: 1.0000 - dense_1_accuracy_7: 1.0000 - dense_1_accuracy_8: 1.0000 - dense_1_accuracy_9: 1.0000 - dense_1_accuracy_10: 1.0000 - dense_1_accuracy_11: 1.0000 - dense_1_accuracy_12: 1.0000 - dense_1_accuracy_13: 1.0000 - dense_1_accuracy_14: 1.0000 - dense_1_accuracy_15: 1.0000 - dense_1_accuracy_16: 1.0000 - dense_1_accuracy_17: 1.0000 - dense_1_accuracy_18: 1.0000 - dense_1_accuracy_19: 1.0000 - dense_1_accuracy_20: 1.0000 - dense_1_accuracy_21: 1.0000 - dense_1_accuracy_22: 1.0000 - dense_1_accuracy_23: 1.0000 - dense_1_accuracy_24: 1.0000 - dense_1_accuracy_25: 1.0000 - dense_1_accuracy_26: 1.0000 - dense_1_accuracy_27: 1.0000 - dense_1_accuracy_28: 1.0000 - dense_1_accuracy_29: 0.0000e+00
Epoch 100/100
60/60 [==============================] - 0s 1ms/step - loss: 7.4536 - dense_1_loss: 0.0000e+00 - dense_1_accuracy: 0.1000 - dense_1_accuracy_1: 0.7000 - dense_1_accuracy_2: 0.9333 - dense_1_accuracy_3: 1.0000 - dense_1_accuracy_4: 1.0000 - dense_1_accuracy_5: 1.0000 - dense_1_accuracy_6: 1.0000 - dense_1_accuracy_7: 1.0000 - dense_1_accuracy_8: 1.0000 - dense_1_accuracy_9: 1.0000 - dense_1_accuracy_10: 1.0000 - dense_1_accuracy_11: 1.0000 - dense_1_accuracy_12: 1.0000 - dense_1_accuracy_13: 1.0000 - dense_1_accuracy_14: 1.0000 - dense_1_accuracy_15: 1.0000 - dense_1_accuracy_16: 1.0000 - dense_1_accuracy_17: 1.0000 - dense_1_accuracy_18: 1.0000 - dense_1_accuracy_19: 1.0000 - dense_1_accuracy_20: 1.0000 - dense_1_accuracy_21: 1.0000 - dense_1_accuracy_22: 1.0000 - dense_1_accuracy_23: 1.0000 - dense_1_accuracy_24: 1.0000 - dense_1_accuracy_25: 1.0000 - dense_1_accuracy_26: 1.0000 - dense_1_accuracy_27: 1.0000 - dense_1_accuracy_28: 1.0000 - dense_1_accuracy_29: 0.0000e+00
<keras.callbacks.callbacks.History at 0x2aaedcdfb38>
You can see the loss of model gradually reduce.Now you have trained a model,Let's move on to the last part in order to realize the reasoning algorithm and generate some music!
You now have a trained model,This model has learned many solo jazz.Now, let's use this model to synthesize new music.
In the sampling of each step,你將以LSTMThe activation of previous state“a”和單元狀態“c”作為輸入,Step forward to spread,And get a new output activation and cell state.然後,和之前一樣使用densorThrough the new activationa來生成輸出.
首先,我們將初始化x0以及LSTM激活,And the unit valuea0和c0初始化為零.
You are going to build a function to do this for you infer that.You will use your previous model of function and you want to sampling time step“Ty”.It will return a sequence can be generated for youkeras模型.此外,該函數包含78A unit of dense layer and activation function.
練習:Implement the following function to sample a series of music value.這是在forLoop to generate T y T_y TyOutput characters need to implement some of the key steps in:
LSTM_Cell
,Its input step“c
”和“a
”To generate the current step“c
”和“a
”.densor
(Previously defined)在“a
”上計算softmax,In order to get the output of the current step.outputs
中並保存.x = Lambda(one_hot)(out)
[說明:This line of code is, in fact not useout
The probability to random sampling values,But in each step to useargmaxSelect the most likely a single comment.]
def music_inference_model(LSTM_cell, densor, n_values = 78, n_a = 64, Ty = 100):
""" 參數: LSTM_cell -- 來自model()的訓練過後的LSTM單元,是keras層對象. densor -- 來自model()的訓練過後的"densor",是keras層對象 n_values -- 整數,唯一值的數量 n_a -- LSTM單元的數量 Ty -- 整數,生成的是時間步的數量 返回: inference_model -- Kears模型實體 """
# 定義模型輸入的維度
x0 = Input(shape=(1,n_values))
# 定義s0,初始化隱藏狀態
a0 = Input(shape=(n_a,),name="a0")
c0 = Input(shape=(n_a,),name="c0")
a = a0
c = c0
x = x0
# 步驟1:創建一個空的outputs列表來保存預測值.
outputs = []
# 步驟2:遍歷Ty,生成所有時間步的輸出
for t in range(Ty):
# 步驟2.A:在LSTM中單步傳播
a, _, c = LSTM_cell(x, initial_state=[a, c])
# 步驟2.B:使用densor()應用於LSTM_Cell的隱藏狀態輸出
out = densor(a)
# 步驟2.C:預測值添加到"outputs"列表中
outputs.append(out)
# 根據“out”選擇下一個值,並將“x”設置為所選值的一個獨熱編碼,
# 該值將在下一步作為輸入傳遞給LSTM_cell.我們已經提供了執行此操作所需的代碼
x = Lambda(one_hot)(out)
# 創建模型實體
inference_model = Model(inputs=[x0, a0, c0], outputs=outputs)
return inference_model
# 獲取模型實體,模型被硬編碼以產生50個值
inference_model = music_inference_model(LSTM_cell, densor, n_values = 78, n_a = 64, Ty = 50)
#創建用於初始化x和LSTM狀態變量a和c的零向量.
x_initializer = np.zeros((1, 1, 78))
a_initializer = np.zeros((1, n_a))
c_initializer = np.zeros((1, n_a))
練習:實現predict_and_sample()
.This function accepts many parameters,包括輸入[x_initializer, a_initializer, c_initializer].In order to predict corresponding to the input output,You will need to perform3個步驟:
pred
應該是長度為20的列表,Each of these elements are a shape for ( T y , n _ v a l u e s ) (T_y,n\_values) (Ty,n_values)的numpy數組.pred
轉換為 T y T_y Ty索引的numpy數組.通過使用pred
列表中元素的argmax
To calculate each index.Hintdef predict_and_sample(inference_model, x_initializer = x_initializer, a_initializer = a_initializer,
c_initializer = c_initializer):
""" Use the model to predict the current value of the next. 參數: inference_model -- keras的實體模型 x_initializer -- 初始化的獨熱編碼,維度為(1, 1, 78) a_initializer -- LSTM單元的隱藏狀態初始化,維度為(1, n_a) c_initializer -- LSTM單元的狀態初始化,維度為(1, n_a) 返回: results -- Generate the value of hot coding vector alone,維度為(Ty, 78) indices -- The generated value index matrix,維度為(Ty, 1) """
# 步驟1:模型來預測給定x_initializer, a_initializer and c_initializer的輸出序列
pred = inference_model.predict([x_initializer, a_initializer, c_initializer])
# 步驟2:將“pred”Converted to has the largest probability index arraynp.array().
indices = np.argmax(pred, axis=-1)
# 步驟3:Converts the index to them a unique thermal code.
results = to_categorical(indices, num_classes=78)
return results, indices
results, indices = predict_and_sample(inference_model, x_initializer, a_initializer, c_initializer)
print("np.argmax(results[12]) =", np.argmax(results[12]))
print("np.argmax(results[17]) =", np.argmax(results[17]))
print("list(indices[12:18]) =", list(indices[12:18]))
np.argmax(results[12]) = 62
np.argmax(results[17]) = 30
list(indices[12:18]) = [array([62], dtype=int64), array([30], dtype=int64), array([64], dtype=int64), array([33], dtype=int64), array([62], dtype=int64), array([30], dtype=int64)]
最後,Are you ready to generate music.你的RNNGenerates a sequence of values.The following code first by calling youpredict_and_sample()
Function to generate the music.然後,Will these values post-processing for chord(Means can play multiple values or notes at the same time).
Most of the calculation of music algorithm USES some post-processing,Because there is no such post processing is difficult to generate sounds nice music.Post processing, such as make sure that the same voice won't repeat too much,Two consecutive notes between pitch are not far apart and so on to deal with each other to generate audio.May someone argue that,There are many in the post-processing steps are hackers.同樣,Generated a lot of music literature also focus on handmade post-processor,And many output quality depends on the quality of post processing,而不僅僅是RNN的質量.But this kind of post-processing is very different,So in our implementation is also try to use it.
Let's start to try to make music!
Run the following cell to generate the music and record it to youout_stream
中.這可能需要幾分鐘.
out_stream = generate_music(inference_model)
Predicting new values for different set of chords.
Generated 50 sounds using the predicted values for the set of chords ("1") and after pruning
Generated 50 sounds using the predicted values for the set of chords ("2") and after pruning
Generated 51 sounds using the predicted values for the set of chords ("3") and after pruning
Generated 51 sounds using the predicted values for the set of chords ("4") and after pruning
Generated 51 sounds using the predicted values for the set of chords ("5") and after pruning
Your generated music is saved in output/my_music.midi
Want to listen to music,請單擊File->Open…,然後轉到"output/" 並下載 “my_music.midi”.You can use to readMidiFile the application on the computer play the files,Also can use the free online conversion tool"MIDI to mp3"將其轉換為mp3.
作為參考,Here we use this algorithm to generate the30A second audio clips.
IPython.display.Audio('./data/30s_trained_model.mp3')
由於CSDNCan't show the music,Blogger would not be in this show.
This is what you should remember: