numpy.array(object, dtype=None, copy=True, order='K', subok=False, ndmin=0)
import numpy as np
arr1 = np.array([1, 2, 3, 4])
print(' Array created arr1 by :', arr1)
arr2 = np.array([[1, 2, 3, 4], [4, 5, 6, 7], [7, 8, 9, 10]])
print(' Array created arr2 by :\n', arr2)
Array created arr1 by : [1 2 3 4]
Array created arr2 by :
[[ 1 2 3 4]
[ 4 5 6 7]
[ 7 8 9 10]]
print(' The array dimension is :', arr2.shape)
print(' The array type is :', arr2.dtype)
print(' The number of array elements is :', arr2.size)
print(' The size of each element of the array is :', arr2.itemsize)
The array dimension is : (3, 4)
The array type is : int32
The number of array elements is : 12
The size of each element of the array is : 4
arr2.shape=4,3
print(' To reset shape After arr2 by :\n', arr2)
# The order of the elements has not changed , Only the size of each axis is changed
To reset shape After arr2 by :
[[ 1 2 3]
[ 4 4 5]
[ 6 7 7]
[ 8 9 10]]
print(' Use arange The array created is :\n', np.arange(0, 1, 0.1))
print(' Use linspace The array created is :\n', np.linspace(0, 1, 12))
# What you create is a series of proportional numbers
print(' Use logspace The array created is :\n', np.logspace(0, 2, 20))
# All arrays are 0
print(' Use zeros The array created is :\n', np.zeros((2, 3)))
# The main diagonal is all 1
print(' Use eye The array created is :\n', np.eye(3))
# The elements on the main diagonal
print(' Use diag The array created is :\n', np.diag([1,2,3,4]))
# All arrays are 1
print(' Use ones The array created is :\n', np.ones((5,3)))
Use arange The array created is :
[0. 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9]
Use linspace The array created is :
[0. 0.09090909 0.18181818 0.27272727 0.36363636 0.45454545
0.54545455 0.63636364 0.72727273 0.81818182 0.90909091 1. ]
Use logspace The array created is :
[ 1. 1.27427499 1.62377674 2.06913808 2.6366509
3.35981829 4.2813324 5.45559478 6.95192796 8.8586679
11.28837892 14.38449888 18.32980711 23.35721469 29.76351442
37.92690191 48.32930239 61.58482111 78.47599704 100. ]
Use zeros The array created is :
[[0. 0. 0.]
[0. 0. 0.]]
Use eye The array created is :
[[1. 0. 0.]
[0. 1. 0.]
[0. 0. 1.]]
Use diag The array created is :
[[1 0 0 0]
[0 2 0 0]
[0 0 3 0]
[0 0 0 4]]
Use ones The array created is :
[[1. 1. 1.]
[1. 1. 1.]
[1. 1. 1.]
[1. 1. 1.]
[1. 1. 1.]]
# Array type conversion
print(' Convert integer to floating point , The result of the conversion is :', np.float64(42))
print(' Convert floating point to integer , The result of the conversion is :', np.int8(42.0))
print(' Integer to Boolean , The result of the conversion is :', np.bool(42))
print(' Integer to Boolean , The result of the conversion is :', np.float64(0))
print(' Convert Boolean to floating point , The result of the conversion is :', np.float(True))
print(' Convert Boolean to floating point , The result of the conversion is :', np.float(False))
Convert integer to floating point , The result of the conversion is : 42.0
Convert floating point to integer , The result of the conversion is : 42
Integer to Boolean , The result of the conversion is : True
Integer to Boolean , The result of the conversion is : 0.0
Convert Boolean to floating point , The result of the conversion is : 1.0
Convert Boolean to floating point , The result of the conversion is : 0.0
# Create data types
df=np.dtype([("name",np.str_,40),("numitems",np.int64),("price",np.float64)])
print(' The data type is :', df)
The data type is : [('name', '<U40'), ('numitems', '<i8'), ('price', '<f8')]
# View data type
print(' The data type is :', df["name"])
print(' The data type is :', np.dtype(df["name"]))
# Custom array data
itemz=np.array([("tomatoes",42,4.14),("cabbages",13,1.72)],dtype=df)
print(' Custom data is :',itemz)
The data type is : <U40
The data type is : <U40
Custom data is : [('tomatoes', 42, 4.14) ('cabbages', 13, 1.72)]
random Modules often use random number generation functions
print(' The generated random array is :',np.random.random(10))
print(' Generate uniformly distributed random arrays as :\n',np.random.rand(2,3))
print(' Generate a random array that obeys the normal distribution as :\n',np.random.randn(2,3))
print(' The random array that generates the given upper and lower bounds is :\n',np.random.randint(2,10,size=[2,5]))
The generated random array is : [0.05478456 0.31793173 0.63195643 0.96141967 0.00333223 0.72768221
0.30489522 0.90413895 0.15791078 0.99559445]
Generate uniformly distributed random arrays as :
[[0.66725553 0.44391885 0.95413037]
[0.77064322 0.53726875 0.26902613]]
Generate a random array that obeys the normal distribution as :
[[ 0.95840647 -0.51848368 0.68529844]
[-0.61515571 0.37733786 0.43860996]]
The random array that generates the given upper and lower bounds is :
[[5 5 7 9 4]
[2 3 5 9 4]]
arr=np.arange(10)
print(' Integer as index , The index result is :',arr[5])
print(' Index the range , barring arr[5], The index result is :',arr[3:5])
print(' Omit the starting index for indexing , The index result is :',arr[:5])
print(' Negative numbers are indexed , The index result is :',arr[-1])
arr[2:4]=100,101
print(' Subscripts are used to modify elements , The array result is :',arr)
print(' Step size as index , The index result is :',arr[1:-1:2])
print(' Negative step numbers are indexed , The start subscript must be greater than the end subscript , The index result is :',arr[5:1:-2])
Integer as index , The index result is : 5
Index the range , barring arr[5], The index result is : [3 4]
Omit the starting index for indexing , The index result is : [0 1 2 3 4]
Negative numbers are indexed , The index result is : 9
Subscripts are used to modify elements , The array result is : [ 0 1 100 101 4 5 6 7 8 9]
Step size as index , The index result is : [ 1 101 5 7]
Negative step numbers are indexed , The start subscript must be greater than the end subscript , The index result is : [ 5 101]
arr=np.array([[1,2,3,4,5],[4,5,6,7,8],[7,8,9,10,11]])
print(' The two-dimensional array created is :\n',arr)
print(' Index No 0 In line 3 Column sum 4 The elements of the column , The index result is :\n',arr[0,3:5])
print(' Index No 2 and 3 In line 3~5 The elements of the column , The index result is :\n',arr[1:,2:])
print(' Index No 2 The elements of the column , The index result is :',arr[:,2])
print(' Take two integers from the corresponding positions of the two sequences to form the subscript , The index result is :',arr[[(0,1,2),(1,2,3)]])
print(' Index No 2、3 In line 0、2、3 The elements of the column , The index result is :\n',arr[1:,(0,2,3)])
mask=np.array([1,0,1],dtype=np.bool)
print('mask Is a Boolean array , Index No 1、3 In line 2 The elements of the column , The index result is :',arr[mask,2])
The two-dimensional array created is :
[[ 1 2 3 4 5]
[ 4 5 6 7 8]
[ 7 8 9 10 11]]
Index No 0 In line 3 Column sum 4 The elements of the column , The index result is :
[4 5]
Index No 2 and 3 In line 3~5 The elements of the column , The index result is :
[[ 6 7 8]
[ 9 10 11]]
Index No 2 The elements of the column , The index result is : [3 6 9]
Take two integers from the corresponding positions of the two sequences to form the subscript , The index result is : [ 2 6 10]
Index No 2、3 In line 0、2、3 The elements of the column , The index result is :
[[ 4 6 7]
[ 7 9 10]]
mask Is a Boolean array , Index No 1、3 In line 2 The elements of the column , The index result is : [3 9]
arr=np.arange(12)
print(' The one-dimensional array created is :\n',arr)
print(' The new one-dimensional array is :\n',arr.reshape(3,4))
print(' The new one-dimensional array is :',arr.reshape(3,4).ndim)
The one-dimensional array created is :
[ 0 1 2 3 4 5 6 7 8 9 10 11]
The new one-dimensional array is :
[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]]
The new one-dimensional array is : 2
# Use ravel The function flattens the array
arr=np.arange(12).reshape(3,4)
print(' The two-dimensional array created is :\n',arr)
print('ravel After flattening the function array :',arr.ravel())
The two-dimensional array created is :
[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]]
ravel After flattening the function array : [ 0 1 2 3 4 5 6 7 8 9 10 11]
# Use flatten The function flattens the array
print('flatten The function array is horizontally flattened to :',arr.flatten())
print('flatten The function array is vertically flattened to :',arr.flatten('F'))
flatten The function array is horizontally flattened to : [ 0 1 2 3 4 5 6 7 8 9 10 11]
flatten The function array is vertically flattened to : [ 0 4 8 1 5 9 2 6 10 3 7 11]
# Use hstack Function array horizontal combination
arr1 = np.arange(12).reshape(3,4)
print(' Array created 1 by :\n',arr1)
arr2=arr1*3
print(' Array created 2 by :\n',arr2)
print('hstack Function to horizontally combine an array :\n',np.hstack((arr1,arr2)))
Array created 1 by :
[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]]
Array created 2 by :
[[ 0 3 6 9]
[12 15 18 21]
[24 27 30 33]]
Horizontal combination :
[[ 0 1 2 3 0 3 6 9]
[ 4 5 6 7 12 15 18 21]
[ 8 9 10 11 24 27 30 33]]
# Use vstack Function array vertical combination
print('vstack Function to vertically combine arrays :\n',np.vstack((arr1,arr2)))
vstack Vertical combination :
[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]
[ 0 3 6 9]
[12 15 18 21]
[24 27 30 33]]
print('concatenate Function to horizontally combine an array :\n',np.concatenate((arr1,arr2),axis=1))
print('concatenate Function to vertically combine arrays :\n',np.concatenate((arr1,arr2),axis=0))
concatenate Function to horizontally combine an array :
[[ 0 1 2 3 0 3 6 9]
[ 4 5 6 7 12 15 18 21]
[ 8 9 10 11 24 27 30 33]]
concatenate Function to vertically combine arrays :
[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]
[ 0 3 6 9]
[12 15 18 21]
[24 27 30 33]]
arr=np.arange(16).reshape(4,4)
print(' The two-dimensional array created is :',arr)
print('hsplit Function to split the array horizontally :\n',np.hsplit(arr,2))
print('vsplit Function to split the array vertically :\n',np.vsplit(arr,2))
The two-dimensional array created is : [[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]
[12 13 14 15]]
hsplit Function to split the array horizontally :
[array([[ 0, 1],
[ 4, 5],
[ 8, 9],
[12, 13]]), array([[ 2, 3],
[ 6, 7],
[10, 11],
[14, 15]])]
vsplit Function to split the array vertically :
[array([[0, 1, 2, 3],
[4, 5, 6, 7]]), array([[ 8, 9, 10, 11],
[12, 13, 14, 15]])]
print('split Function to split the array horizontally :\n',np.split(arr,2,axis=1))
print('split Function to split the array vertically :\n',np.split(arr,2,axis=0))
split Function to split the array horizontally :
[array([[ 0, 1],
[ 4, 5],
[ 8, 9],
[12, 13]]), array([[ 2, 3],
[ 6, 7],
[10, 11],
[14, 15]])]
split Function to split the array vertically :
[array([[0, 1, 2, 3],
[4, 5, 6, 7]]), array([[ 8, 9, 10, 11],
[12, 13, 14, 15]])]
Matrix specific attributes and descriptions
# Use mat Function and matrix Function to create a matrix
import numpy as pd
matr1=np.mat("1 2 3;4 5 6;7 8 9")
print('mat Create a matrix for :\n',matr1)
matr2=np.mat([[1,2,3],[4,5,6],[7,8,9]])
print('matrix Create a matrix for :\n',matr2)
mat Create a matrix for :
[[1 2 3]
[4 5 6]
[7 8 9]]
matrix Create a matrix for :
[[1 2 3]
[4 5 6]
[7 8 9]]
arr1=np.eye(3)
print(' Array created 1 by :\n',arr1)
arr2=3*arr1
print(' Array created 2 by :\n',arr2)
print('bmat Create a matrix for :\n',np.bmat("arr1 arr2;arr1 arr2"))
Array created 1 by :
[[1. 0. 0.]
[0. 1. 0.]
[0. 0. 1.]]
Array created 2 by :
[[3. 0. 0.]
[0. 3. 0.]
[0. 0. 3.]]
bmat Create a matrix for :
[[1. 0. 0. 3. 0. 0.]
[0. 1. 0. 0. 3. 0.]
[0. 0. 1. 0. 0. 3.]
[1. 0. 0. 3. 0. 0.]
[0. 1. 0. 0. 3. 0.]
[0. 0. 1. 0. 0. 3.]]
# Matrix operations
matr1=np.mat("1 2 3;4 5 6;7 8 9")
print(' Create a matrix for :\n',matr1)
matr2=matr1*3
print(' Create a matrix for :\n',matr2)
print(' The result of matrix addition is :\n',matr1+matr2)
print(' The result of matrix subtraction is :\n',matr1-matr2)
print(' The result of matrix multiplication is :\n',matr1*matr2)
print(' The result of multiplying the corresponding elements of the matrix is :\n',np.multiply(matr1,matr2))
Create a matrix for :
[[1 2 3]
[4 5 6]
[7 8 9]]
Create a matrix for :
[[ 3 6 9]
[12 15 18]
[21 24 27]]
The result of matrix addition is :
[[ 4 8 12]
[16 20 24]
[28 32 36]]
The result of matrix subtraction is :
[[ -2 -4 -6]
[ -8 -10 -12]
[-14 -16 -18]]
The result of matrix multiplication is :
[[ 90 108 126]
[198 243 288]
[306 378 450]]
The result of multiplying the corresponding elements of the matrix is :
[[ 3 12 27]
[ 48 75 108]
[147 192 243]]
# View matrix properties
print(' The result of matrix transpose is :\n',matr1.T)
print(' The result of matrix conjugate transpose is :\n',matr1.H)
try:
print(matr1.I)
except:
print(" Singular matrix , The inverse matrix does not exist !")
print(' The two-dimensional array result of the matrix is ( Return to the matrix view ):\n',matr1.A)
The result of matrix transpose is :
[[1 4 7]
[2 5 8]
[3 6 9]]
The result of matrix conjugate transpose is :
[[1 4 7]
[2 5 8]
[3 6 9]]
Singular matrix , The inverse matrix does not exist !
The two-dimensional array result of the matrix is ( Return to the matrix view ):
[[1 2 3]
[4 5 6]
[7 8 9]]
ufunc function : The generic function , A function that can operate on all elements in an array , Operate on arrays ; When repeating an array , Use ufunc Function is better than using math The functions in the library are much more efficient .
# Broadcast mechanism of one-dimensional array
arr1=np.array([[0,0,0],[1,1,1],[2,2,2],[3,3,3]])
print(' Array created 1 by :\n',arr1)
print(' Array 1 Of shape by :\n',arr1.shape)
arr2=np.array([1,2,3])
print(' Array created 2 by :\n',arr2)
print(' Array 2 Of shape by :\n',arr2.shape)
print(' The result of adding arrays is :\n',arr1+arr2)
Array created 1 by :
[[0 0 0]
[1 1 1]
[2 2 2]
[3 3 3]]
Array 1 Of shape by :
(4, 3)
Array created 2 by :
[1 2 3]
Array 2 Of shape by :
(3,)
The result of adding arrays is :
[[1 2 3]
[2 3 4]
[3 4 5]
[4 5 6]]
# Broadcasting mechanism of two-dimensional array
arr1=np.array([[0,0,0],[1,1,1],[2,2,2],[3,3,3]])
print(' Array created 1 by :\n',arr1)
print(' Array 1 Of shape by :\n',arr1.shape)
arr2=np.array([1,2,3,4]).reshape((4,1))
print(' Array created 2 by :\n',arr2)
print(' Array 2 Of shape by :\n',arr2.shape)
print(' The result of adding arrays is :\n',arr1+arr2)
Array created 1 by :
[[0 0 0]
[1 1 1]
[2 2 2]
[3 3 3]]
Array 1 Of shape by :
(4, 3)
Array created 2 by :
[[1]
[2]
[3]
[4]]
Array 2 Of shape by :
(4, 1)
The result of adding arrays is :
[[1 1 1]
[3 3 3]
[5 5 5]
[7 7 7]]
np.save(file,arr,allow_pickle=True,fix_imports=True)
# Binary storage
import numpy as np
arr=np.arange(100).reshape(10,10)
np.save("./save_arr",arr)
print(' The saved array is :\n',arr)
The saved array is :
[[ 0 1 2 3 4 5 6 7 8 9]
[10 11 12 13 14 15 16 17 18 19]
[20 21 22 23 24 25 26 27 28 29]
[30 31 32 33 34 35 36 37 38 39]
[40 41 42 43 44 45 46 47 48 49]
[50 51 52 53 54 55 56 57 58 59]
[60 61 62 63 64 65 66 67 68 69]
[70 71 72 73 74 75 76 77 78 79]
[80 81 82 83 84 85 86 87 88 89]
[90 91 92 93 94 95 96 97 98 99]]
# Multiple arrays store
arr1=np.array([[1,2,3],[4,5,6]])
arr2=np.arange(0,1.0,0.1)
np.savez('./savez_arr',arr1,arr2)
print(' Saved array 1 by :\n',arr1)
print(' Saved array 2 by :',arr2)
Saved array 1 by :
[[1 2 3]
[4 5 6]]
Saved array 2 by : [0. 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9]
# Binary file read
loaded_data = np.load("./save_arr.npy")
print(' The array read is :\n',loaded_data)
The array read is :
[[ 0 1 2 3 4 5 6 7 8 9]
[10 11 12 13 14 15 16 17 18 19]
[20 21 22 23 24 25 26 27 28 29]
[30 31 32 33 34 35 36 37 38 39]
[40 41 42 43 44 45 46 47 48 49]
[50 51 52 53 54 55 56 57 58 59]
[60 61 62 63 64 65 66 67 68 69]
[70 71 72 73 74 75 76 77 78 79]
[80 81 82 83 84 85 86 87 88 89]
[90 91 92 93 94 95 96 97 98 99]]
# Read a file containing multiple arrays
loaded_data1=np.load('./savez_arr.npz')
print(' Read array 1 by :\n',loaded_data1['arr_0'])
print(' Read array 2 by :\n',loaded_data1['arr_1'])
np.savetxt(fname,X,fmt='%.18e',delimiter=' ',newline='\n',header='',footer='',comments='# '
Read array 1 by :
[[1 2 3]
[4 5 6]]
Read array 2 by :
[0. 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9]
arr=np.arange(0,12,0.5).reshape(4,-1)
print(' The array created is :',arr)
The array created is : [[ 0. 0.5 1. 1.5 2. 2.5]
[ 3. 3.5 4. 4.5 5. 5.5]
[ 6. 6.5 7. 7.5 8. 8.5]
[ 9. 9.5 10. 10.5 11. 11.5]]
# fmt ="%d" Means to save as an integer
np.savetxt("./arr.txt",arr,fmt="%d",delimiter=",")
# You also need to specify comma separation when reading
loaded_data=np.loadtxt("./arr.txt",delimiter=",")
print(" The array read is :",loaded_data)
The array read is : [[ 0. 0. 1. 1. 2. 2.]
[ 3. 3. 4. 4. 5. 5.]
[ 6. 6. 7. 7. 8. 8.]
[ 9. 9. 10. 10. 11. 11.]]
# Use genfromtxt Function to read an array
loaded_data=np.genfromtxt("./arr.txt",delimiter=",")
print(' The array read is :',loaded_data)
The array read is : [[ 0. 0. 1. 1. 2. 2.]
[ 3. 3. 4. 4. 5. 5.]
[ 6. 6. 7. 7. 8. 8.]
[ 9. 9. 10. 10. 11. 11.]]
np.random.seed(42)
arr=np.random.randint(1,10,size=10)
print(' The array created is :',arr)
# Direct sort
arr.sort()
print(' The sorted array is :',arr)
arr=np.random.randint(1,10,size=(3,3))
print(' The array created is :\n',arr)
arr.sort(axis=1)
print(' After sorting along the horizontal axis, the array is :\n',arr)
arr.sort(axis=0)
print(' After sorting along the vertical axis, the array is :\n',arr)
The array created is : [7 4 8 5 7 3 7 8 5 4]
The sorted array is : [3 4 4 5 5 7 7 7 8 8]
The array created is :
[[8 8 3]
[6 5 2]
[8 6 2]]
After sorting along the horizontal axis, the array is :
[[3 8 8]
[2 5 6]
[2 6 8]]
After sorting along the vertical axis, the array is :
[[2 5 6]
[2 6 8]
[3 8 8]]
arr=np.array([2,3,6,8,0,7])
print(' The array created is :',arr)
print(' The sorted array is :',arr.argsort())
# The return value is the subscript of the reordering value
The array created is : [2 3 6 8 0 7]
The sorted array is : [4 0 1 2 5 3]
a=np.array([3,2,6,4,5])
b=np.array([50,30,40,20,10])
c=np.array([400,300,600,100,200])
# lexsort Only one parameter is received , namely abc
# When sorting multiple key values, it is calculated according to the last incoming data
d=np.lexsort((a,b,c))
print(' The sorted array is :',list(zip(a[d],b[d],c[d])))
The sorted array is : [(4, 20, 100), (5, 10, 200), (2, 30, 300), (3, 50, 400), (6, 40, 600)]
names=np.array([' Xiao Ming ',' floret ',' Xiao Huang ',' Xiao Ming ',' floret ',' Xiaolan ',' The small white '])
print(' Array created names by :',names)
print(' Array after de duplication names by :',np.unique(names))
# Follow unique equivalent python Code implementation process
print('python The array after Code de duplication is :',sorted(set(names)))
ints=np.array([1,2,3,4,4,5,6,6,7,7,7,8,9,10])
print(' Array created ints by :',ints)
print(' Array after de duplication ints by :',np.unique(ints))
Array created names by : [' Xiao Ming ' ' floret ' ' Xiao Huang ' ' Xiao Ming ' ' floret ' ' Xiaolan ' ' The small white ']
Array after de duplication names by : [' Xiaolan ' ' Xiao Ming ' ' The small white ' ' floret ' ' Xiao Huang ']
python The array after Code de duplication is : [' Xiaolan ', ' Xiao Ming ', ' The small white ', ' floret ', ' Xiao Huang ']
Array created ints by : [ 1 2 3 4 4 5 6 6 7 7 7 8 9 10]
Array after de duplication ints by : [ 1 2 3 4 5 6 7 8 9 10]
arr=np.arange(5)
print(' The array created is :',arr)
print(' The array after repetition is :',np.tile(arr,3))
The array created is : [0 1 2 3 4]
The array after repetition is : [0 1 2 3 4 0 1 2 3 4 0 1 2 3 4]
np.random.seed(42)
arr=np.random.randint(0,10,size=(3,3))
print(' The array created is :',arr)
print(' Repeat elements by line , The array after repetition is :\n',arr.repeat(2,axis=0))
print(' Repeat elements by column , The array after repetition is :\n',arr.repeat(2,axis=1))
The array created is : [[6 3 7]
[4 6 9]
[2 6 7]]
Repeat elements by line , The array after repetition is :
[[6 3 7]
[6 3 7]
[4 6 9]
[4 6 9]
[2 6 7]
[2 6 7]]
Repeat elements by column , The array after repetition is :
[[6 6 3 3 7 7]
[4 4 6 6 9 9]
[2 2 6 6 7 7]]
arr=np.arange(20).reshape(4,5)
print(' The array created is :\n',arr)
print(' The sum of arrays is :',np.sum(arr))
print(' The sum of the vertical axis array is :',arr.sum(axis=0))
print(' The sum of the horizontal axis array is :',arr.sum(axis=1))
print(' The average value of the array is :',np.mean(arr))
print(' The mean value of the vertical axis array is :',arr.mean(axis=0))
print(' The mean value of the horizontal axis array is :',arr.mean(axis=1))
print(' The standard deviation of the array is :',np.std(arr))
print(' The variance of the array is :',np.var(arr))
print(' The minimum value of the array is :',np.min(arr))
print(' The maximum value of the array is :',np.max(arr))
print(' The minimum element index of the array is :',np.argmin(arr))
print(' The maximum element index of the array is :',np.argmax(arr))
The array created is :
[[ 0 1 2 3 4]
[ 5 6 7 8 9]
[10 11 12 13 14]
[15 16 17 18 19]]
The sum of arrays is : 190
The sum of the vertical axis array is : [30 34 38 42 46]
The sum of the horizontal axis array is : [10 35 60 85]
The average value of the array is : 9.5
The mean value of the vertical axis array is : [ 7.5 8.5 9.5 10.5 11.5]
The mean value of the horizontal axis array is : [ 2. 7. 12. 17.]
The standard deviation of the array is : 5.766281297335398
The variance of the array is : 33.25
The minimum value of the array is : 0
The maximum value of the array is : 19
The minimum element index of the array is : 0
The maximum element index of the array is : 19
# cumsum and cumprod Use of functions
arr=np.arange(2,10)
print(' The array created is :',arr)
print(' The cumulative sum of array elements is :',np.cumsum(arr))
print(' The cumulative product of array elements is :',np.cumprod(arr))
The array created is : [2 3 4 5 6 7 8 9]
The cumulative sum of array elements is : [ 2 5 9 14 20 27 35 44]
The cumulative product of array elements is : [ 2 6 24 120 720 5040 40320 362880]
# Statistical analysis of iris
iris_sepal_length=np.loadtxt('E:/anaconda/data/iris_sepal_length.csv',delimiter=',')
print(' The calyx length is :',iris_sepal_length)
iris_sepal_length.sort()
print(' The sorted calyx length table is :',iris_sepal_length)
The calyx length is : [5.1 4.9 4.7 4.6 5. 5.4 4.6 5. 4.4 4.9 5.4 4.8 4.8 4.3 5.8 5.7 5.4 5.1
5.7 5.1 5.4 5.1 4.6 5.1 4.8 5. 5. 5.2 5.2 4.7 4.8 5.4 5.2 5.5 4.9 5.
5.5 4.9 4.4 5.1 5. 4.5 4.4 5. 5.1 4.8 5.1 4.6 5.3 5. 7. 6.4 6.9 5.5
6.5 5.7 6.3 4.9 6.6 5.2 5. 5.9 6. 6.1 5.6 6.7 5.6 5.8 6.2 5.6 5.9 6.1
6.3 6.1 6.4 6.6 6.8 6.7 6. 5.7 5.5 5.5 5.8 6. 5.4 6. 6.7 6.3 5.6 5.5
5.5 6.1 5.8 5. 5.6 5.7 5.7 6.2 5.1 5.7 6.3 5.8 7.1 6.3 6.5 7.6 4.9 7.3
6.7 7.2 6.5 6.4 6.8 5.7 5.8 6.4 6.5 7.7 7.7 6. 6.9 5.6 7.7 6.3 6.7 7.2
6.2 6.1 6.4 7.2 7.4 7.9 6.4 6.3 6.1 7.7 6.3 6.4 6. 6.9 6.7 6.9 5.8 6.8
6.7 6.7 6.3 6.5 6.2 5.9]
The sorted calyx length table is : [4.3 4.4 4.4 4.4 4.5 4.6 4.6 4.6 4.6 4.7 4.7 4.8 4.8 4.8 4.8 4.8 4.9 4.9
4.9 4.9 4.9 4.9 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.1 5.1 5.1 5.1
5.1 5.1 5.1 5.1 5.1 5.2 5.2 5.2 5.2 5.3 5.4 5.4 5.4 5.4 5.4 5.4 5.5 5.5
5.5 5.5 5.5 5.5 5.5 5.6 5.6 5.6 5.6 5.6 5.6 5.7 5.7 5.7 5.7 5.7 5.7 5.7
5.7 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.9 5.9 5.9 6. 6. 6. 6. 6. 6. 6.1
6.1 6.1 6.1 6.1 6.1 6.2 6.2 6.2 6.2 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3
6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.5 6.5 6.5 6.5 6.5 6.6 6.6 6.7 6.7 6.7 6.7
6.7 6.7 6.7 6.7 6.8 6.8 6.8 6.9 6.9 6.9 6.9 7. 7.1 7.2 7.2 7.2 7.3 7.4
7.6 7.7 7.7 7.7 7.7 7.9]
print(' The calyx length after weight removal is :',np.unique(iris_sepal_length))
print(' The sum of calyx length table is :',np.sum(iris_sepal_length))
print(' The cumulative sum of calyx length table is :',np.cumsum(iris_sepal_length))
print(' The mean value of calyx length table is :',np.mean(iris_sepal_length))
print(' The standard deviation of calyx length table is :',np.std(iris_sepal_length))
print(' The variance of calyx length table is :',np.var(iris_sepal_length))
print(' The minimum value of calyx length table is :',np.min(iris_sepal_length))
print(' The maximum value of calyx length table is :',np.max(iris_sepal_length))
The calyx length after weight removal is : [4.3 4.4 4.5 4.6 4.7 4.8 4.9 5. 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6.
6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7. 7.1 7.2 7.3 7.4 7.6 7.7 7.9]
The sum of calyx length table is : 876.5
The cumulative sum of calyx length table is : [ 4.3 8.7 13.1 17.5 22. 26.6 31.2 35.8 40.4 45.1 49.8 54.6
59.4 64.2 69. 73.8 78.7 83.6 88.5 93.4 98.3 103.2 108.2 113.2
118.2 123.2 128.2 133.2 138.2 143.2 148.2 153.2 158.3 163.4 168.5 173.6
178.7 183.8 188.9 194. 199.1 204.3 209.5 214.7 219.9 225.2 230.6 236.
241.4 246.8 252.2 257.6 263.1 268.6 274.1 279.6 285.1 290.6 296.1 301.7
307.3 312.9 318.5 324.1 329.7 335.4 341.1 346.8 352.5 358.2 363.9 369.6
375.3 381.1 386.9 392.7 398.5 404.3 410.1 415.9 421.8 427.7 433.6 439.6
445.6 451.6 457.6 463.6 469.6 475.7 481.8 487.9 494. 500.1 506.2 512.4
518.6 524.8 531. 537.3 543.6 549.9 556.2 562.5 568.8 575.1 581.4 587.7
594.1 600.5 606.9 613.3 619.7 626.1 632.5 639. 645.5 652. 658.5 665.
671.6 678.2 684.9 691.6 698.3 705. 711.7 718.4 725.1 731.8 738.6 745.4
752.2 759.1 766. 772.9 779.8 786.8 793.9 801.1 808.3 815.5 822.8 830.2
837.8 845.5 853.2 860.9 868.6 876.5]
The mean value of calyx length table is : 5.843333333333334
The standard deviation of calyx length table is : 0.8253012917851409
The variance of calyx length table is : 0.6811222222222223
The minimum value of calyx length table is : 4.3
The maximum value of calyx length table is : 7.9