程序師世界是廣大編程愛好者互助、分享、學習的平台,程序師世界有你更精彩!
首頁
編程語言
C語言|JAVA編程
Python編程
網頁編程
ASP編程|PHP編程
JSP編程
數據庫知識
MYSQL數據庫|SqlServer數據庫
Oracle數據庫|DB2數據庫
您现在的位置: 程式師世界 >> 編程語言 >  >> 更多編程語言 >> Python

Implementation of simple image filtering in Python digital image processing

編輯:Python

Catalog

introduction

1、sobel operator

2、roberts operator

3、scharr operator

4、prewitt operator

5、canny operator

6、gabor wave filtering

7、gaussian wave filtering

8、median

9、 level 、 Vertical edge detection

10、 Cross edge detection

introduction

Filter the image , It can have two effects : One is smooth filtering , Used to suppress noise ; The other is differential operator , It can be used for edge detection and feature extraction .

skimage Pass through the library filters The module performs filtering operation .

1、sobel operator

sobel Operators can be used to detect edges

The function format is :skimage.filters.sobel(image, mask=None)

from skimage import data,filtersimport matplotlib.pyplot as pltimg = data.camera()edges = filters.sobel(img)plt.imshow(edges,plt.cm.gray)

2、roberts operator

roberts Operator and sobel Like operators , Used to detect edges

The call format is the same :

edges = filters.roberts(img)3、scharr operator

Same function sobel, Invocation format :

edges = filters.scharr(img)4、prewitt operator

Same function sobel, Invocation format :

edges = filters.prewitt(img)5、canny operator

canny Operators are also used to extract edge features , But it's not on filters modular , It's on the feature modular

Function format :skimage.feature.canny(image,sigma=1.0)

You can modify sigma To adjust the effect

from skimage import data,filters,featureimport matplotlib.pyplot as pltimg = data.camera()edges1 = feature.canny(img) #sigma=1edges2 = feature.canny(img,sigma=3) #sigma=3plt.figure('canny',figsize=(8,8))plt.subplot(121)plt.imshow(edges1,plt.cm.gray) plt.subplot(122)plt.imshow(edges2,plt.cm.gray)plt.show()

It can be seen from the results ,sigma The smaller it is , The smaller the edge lines .

6、gabor wave filtering

gabor Filtering can be used for edge detection and texture feature extraction .

Function call format :skimage.filters.gabor_filter(image, frequency)

By modifying the frequency Value to adjust the filtering effect , Returns a pair of edge results , One is to use the filtering result of the real filtering kernel , One is the filtering result of the imaginary filtering kernel .

from skimage import data,filtersimport matplotlib.pyplot as pltimg = data.camera()filt_real, filt_imag = filters.gabor_filter(img,frequency=0.6) plt.figure('gabor',figsize=(8,8))plt.subplot(121)plt.title('filt_real')plt.imshow(filt_real,plt.cm.gray) plt.subplot(122)plt.title('filt-imag')plt.imshow(filt_imag,plt.cm.gray)plt.show()

The above is frequency=0.6 Results of .

The above is frequency=0.1 Results of

7、gaussian wave filtering

Multidimensional filter , It is a kind of smoothing filter , Can eliminate Gaussian noise .

The call function is :skimage.filters.gaussian_filter(image, sigma)

By adjusting the sigma To adjust the filtering effect

from skimage import data,filtersimport matplotlib.pyplot as pltimg = data.astronaut()edges1 = filters.gaussian_filter(img,sigma=0.4) #sigma=0.4edges2 = filters.gaussian_filter(img,sigma=5) #sigma=5plt.figure('gaussian',figsize=(8,8))plt.subplot(121)plt.imshow(edges1,plt.cm.gray) plt.subplot(122)plt.imshow(edges2,plt.cm.gray)plt.show()

so sigma The bigger it is , The more blurred the filtered image

8、median

median filtering , A smoothing filter , Noise can be eliminated .

Need to use skimage.morphology Module to set the shape of the filter .

from skimage import data,filtersimport matplotlib.pyplot as pltfrom skimage.morphology import diskimg = data.camera()edges1 = filters.median(img,disk(5))edges2= filters.median(img,disk(9))plt.figure('median',figsize=(8,8))plt.subplot(121)plt.imshow(edges1,plt.cm.gray) plt.subplot(122)plt.imshow(edges2,plt.cm.gray)plt.show()

It can be seen from the results , The larger the filter , The more blurred the image .

9、 level 、 Vertical edge detection

The above examples are all edge detection , Sometimes we just need to detect horizontal edges , Or vertical edge , You can use the following method .

Horizontal edge detection :sobel_h, prewitt_h, scharr_h

Vertical edge detection : sobel_v, prewitt_v, scharr_v

from skimage import data,filtersimport matplotlib.pyplot as pltimg = data.camera()edges1 = filters.sobel_h(img) edges2 = filters.sobel_v(img) plt.figure('sobel_v_h',figsize=(8,8))plt.subplot(121)plt.imshow(edges1,plt.cm.gray) plt.subplot(122)plt.imshow(edges2,plt.cm.gray)plt.show()

The upper left figure shows the detected horizontal edge , The right figure shows the detected vertical edge .

10、 Cross edge detection

You can use Roberts The cross core of , To achieve the purpose of detecting the cross edge . These cross edges are actually a component of the gradient in one direction .

One of the nuclei :

0   1
-1   0

Corresponding function :

roberts_neg_diag(image)

  example :

from skimage import data,filtersimport matplotlib.pyplot as pltimg =data.camera()dst =filters.roberts_neg_diag(img) plt.figure('filters',figsize=(8,8))plt.subplot(121)plt.title('origin image')plt.imshow(img,plt.cm.gray)plt.subplot(122)plt.title('filted image')plt.imshow(dst,plt.cm.gray)

Another core :

1   0
0  -1

The corresponding function is :

roberts_pos_diag(image)

from skimage import data,filtersimport matplotlib.pyplot as pltimg =data.camera()dst =filters.roberts_pos_diag(img) plt.figure('filters',figsize=(8,8))plt.subplot(121)plt.title('origin image')plt.imshow(img,plt.cm.gray)plt.subplot(122)plt.title('filted image')plt.imshow(dst,plt.cm.gray)

That's all python Digital image processing of the image simple filter implementation details , More about python For information on simple filtering of digital image processing, please pay attention to other relevant articles on the software development network !



  1. 上一篇文章:
  2. 下一篇文章:
Copyright © 程式師世界 All Rights Reserved