程序師世界是廣大編程愛好者互助、分享、學習的平台,程序師世界有你更精彩!
首頁
編程語言
C語言|JAVA編程
Python編程
網頁編程
ASP編程|PHP編程
JSP編程
數據庫知識
MYSQL數據庫|SqlServer數據庫
Oracle數據庫|DB2數據庫
您现在的位置: 程式師世界 >> 編程語言 >  >> 更多編程語言 >> Python

Demonstration of raspberry PI and python opencv artificial neural network and convolutional neural network and its micro framework for machine learning

編輯:Python

First , This paper mainly discusses and demonstrates the basic data model used in machine learning and its demonstration , The second is the in-depth learning discussion , then , discuss ANN and CNN How to predict results , for example , When rendering an unknown image ,CNN Will try to recognize it as belonging to one of the categories it has been trained to recognize .

Raspberry Pi machine learning

Machine learning data model

install OpenCV

k- Nearest neighbor (k-NN) Model

Decision tree classifier

Principal component analysis (PCA)


import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
from sklearn import decomposition
from sklearn.preprocessing import scale
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
df = pd.read_csv('iris.csv', header=None, sep=',')
df.columns=['sepal_length', 'sepal_width', 'petal_length',
'petal_width', 'class']
df.dropna(how="all", inplace=True) # Drops empty line at EOF
# Show the first 5 records
print(df.head())
f, ax = plt.subplots(1, 4, figsize=(10,5))
vis1 = sns.distplot(df['sepal_length'],bins=10, ax= ax[0])
vis2 = sns.distplot(df['sepal_width'],bins=10, ax=ax[1])
vis3 = sns.distplot(df['petal_length'],bins=10, ax= ax[2])
vis4 = sns.distplot(df['petal_width'],bins=10, ax=ax[3])
plt.show()
# split data table into data X and class labels y
X = df.ix[:,0:4].values
y = df.ix[:,4].values
# Standardize the data
X_std = StandardScaler().fit_transform(X)
# Compute the covariance matrix
mean_vec = np.mean(X_std, axis=0)
cov_mat = (X_std -mean_vec).T.dot(X_std - mean_vec) /
(X_std.shape[0] - 1)
print('Covariance matrix \n%s' %cov_mat)
# Compute the Eigenvectors and Eigenvalues
cov_mat = np.cov(X_std.T)
eig_vals, eig_vecs = np.linalg.eig(cov_mat)
print('Eigenvectors \n%s' %eig_vecs)
print('Eigenvalues \n%s' %eig_vals)
eig_pairs = [(np.abs(eig_vals[i]), eig_vecs[:,i]) for i in
range(len(eig_vals))]
eig_pairs.sort()
eig_pairs.reverse()
print('Eigenvalues in descending order:')
for i in eig_pairs:
print(i[0])
# Compute the Eigenvalue ratios
tot = sum(eig_vals)
var_exp = [(i / tot)*100 for i in sorted(eig_vals,
reverse=True)]
cum_var_exp = np.cumsum(var_exp)
print('Eigenvalue ratios:%s' %cum_var_exp)
#Create the W matrix
matrix_w = np.hstack((eig_pairs[0][1].reshape(4,1),
eig_pairs[1][1].reshape(4,1)))
print('Matrix W:\n', matrix_w)
# Transform the X_std dataset to the sub-space Y
Y = X_std.dot(matrix_w)
features = ['sepal_length', 'sepal_width', 'petal_length',
'petal_width']
# Create a scatter plot for PC1 vs PC2
x = df.loc[:,features].values
x = StandardScaler().fit_transform(x)
pca = PCA(n_components=2)
principalComponents = pca.fit_transform(x)
principalDf = pd.DataFrame(data=principalComponents,
columns=['principal component 1','principal component 2'])
finalDf = pd.concat([principalDf, df[['class']]], axis=1)
fig = plt.figure(figsize=(8,8))
ax = fig.add_subplot(1,1,1)
ax.set_xlabel('Principal Component 1', fontsize=15)
ax.set_ylabel('Principal Component 2', fontsize=15)
ax.set_title('2 Component PCA', fontsize=20)
targets = ['setosa', 'versicolor', 'virginica']
colors = ['r', 'g', 'b']
for target, color in zip(targets, colors):
indicesToKeep = finalDf['class'] == target
ax.scatter(finalDf.loc[indicesToKeep, 'principal component
1'], finalDf.loc[indicesToKeep, 'principal component 2'],
c=color, s=50)
ax.legend(targets)
ax.grid
plt.show()

Linear discriminant analysis (LDA)

Support vector machine

Learning vector quantization

Bagging and random forest

Artificial neural network and its demonstration

Recognize handwritten numbers

Use Keras Recognize handwritten words

Convolutional neural network and its demonstration

MNIST Data set demonstration

Use Raspberry Pi Micro machine learning framework

Refer to the - Yatu inter


  1. 上一篇文章:
  2. 下一篇文章:
Copyright © 程式師世界 All Rights Reserved