隨著微信的普及,越來越多的人開始使用微信。微信漸漸從一款單純的社交軟件轉變成了一個生活方式,人們的日常溝通需要微信,工作交流也需要微信。微信裡的每一個好友,都代表著人們在社會裡扮演的不同角色。
今天這篇文章會基於Python對微信好友進行數據分析,這裡選擇的維度主要有:性別、頭像、簽名、位置,主要采用圖表和詞雲兩種形式來呈現結果,其中,對文本類信息會采用詞頻分析和情感分析兩種方法。常言道:工欲善其事,必先利其器也。在正式開始這篇文章前,簡單介紹下本文中使用到的第三方模塊:
itchat:微信網頁版接口封裝Python版本,在本文中用以獲取微信好友信息。
jieba:結巴分詞的 Python 版本,在本文中用以對文本信息進行分詞處理。
matplotlib:Python 中圖表繪制模塊,在本文中用以繪制柱形圖和餅圖
snownlp:一個 Python 中的中文分詞模塊,在本文中用以對文本信息進行情感判斷。
PIL:Python 中的圖像處理模塊,在本文中用以對圖片進行處理。
numpy:Python中 的數值計算模塊,在本文中配合 wordcloud 模塊使用。
wordcloud:Python 中的詞雲模塊,在本文中用以繪制詞雲圖片。
TencentYoutuyun:騰訊優圖提供的 Python 版本 SDK ,在本文中用以識別人臉及提取圖片標簽信息。
以上模塊均可通過 pip 安裝,關於各個模塊使用的詳細說明,請自行查閱各自文檔。
01
數據分析
分析微信好友數據的前提是獲得好友信息,通過使用 itchat 這個模塊,這一切會變得非常簡單,我們通過下面兩行代碼就可以實現:
itchat.auto_login(hotReload = True)
friends = itchat.get_friends(update = True)
同平時登錄網頁版微信一樣,我們使用手機掃描二維碼就可以登錄,這裡返回的friends對象是一個集合,第一個元素是當前用戶。所以,在下面的數據分析流程中,我們始終取friends[1:]作為原始輸入數據,集合中的每一個元素都是一個字典結構,以我本人為例,可以注意到這裡有Sex、City、Province、HeadImgUrl、Signature這四個字段,我們下面的分析就從這四個字段入手:
02
好友性別
分析好友性別,我們首先要獲得所有好友的性別信息,這裡我們將每一個好友信息的Sex字段提取出來,然後分別統計出Male、Female和Unkonw的數目,我們將這三個數值組裝到一個列表中,即可使用matplotlib模塊繪制出餅圖來,其代碼實現如下:
def analyseSex(firends):
sexs = list(map(lambda x:x['Sex'],friends[1:]))
counts = list(map(lambda x:x[1],Counter(sexs).items()))
labels = ['Unknow','Male','Female']
colors = ['red','yellowgreen','lightskyblue']
plt.figure(figsize=(8,5), dpi=80)
plt.axes(aspect=1)
plt.pie(counts, #性別統計結果
labels=labels, #性別展示標簽
colors=colors, #餅圖區域配色
labeldistance = 1.1, #標簽距離圓點距離
autopct = '%3.1f%%', #餅圖區域文本格式
shadow = False, #餅圖是否顯示陰影
startangle = 90, #餅圖起始角度
pctdistance = 0.6 #餅圖區域文本距離圓點距離
)
plt.legend(loc='upper right',)
plt.title(u'%s的微信好友性別組成' % friends[0]['NickName'])
plt.show()
這裡簡單解釋下這段代碼,微信中性別字段的取值有Unkonw、Male和Female三種,其對應的數值分別為0、1、2。通過Collection模塊中的Counter()對這三種不同的取值進行統計,其items()方法返回的是一個元組的集合。
該元組的第一維元素表示鍵,即0、1、2,該元組的第二維元素表示數目,且該元組的集合是排序過的,即其鍵按照0、1、2 的順序排列,所以通過map()方法就可以得到這三種不同取值的數目,我們將其傳遞給matplotlib繪制即可,這三種不同取值各自所占的百分比由matplotlib計算得出。下圖是matplotlib繪制的好友性別分布圖:
03
好友頭像
分析好友頭像,從兩個方面來分析,第一,在這些好友頭像中,使用人臉頭像的好友比重有多大;第二,從這些好友頭像中,可以提取出哪些有價值的關鍵字。
這裡需要根據HeadImgUrl字段下載頭像到本地,然後通過騰訊優圖提供的人臉識別相關的API接口,檢測頭像圖片中是否存在人臉以及提取圖片中的標簽。其中,前者是分類匯總,我們使用餅圖來呈現結果;後者是對文本進行分析,我們使用詞雲來呈現結果。關鍵代碼如下所示:
def analyseHeadImage(frineds):
# Init Path
basePath = os.path.abspath('.')
baseFolder = basePath + '\\HeadImages\\'
if(os.path.exists(baseFolder) == False):
os.makedirs(baseFolder)
# Analyse Images
faceApi = FaceAPI()
use_face = 0
not_use_face = 0
image_tags = ''
for index in range(1,len(friends)):
friend = friends[index]
# Save HeadImages
imgFile = baseFolder + '\\Image%s.jpg' % str(index)
imgData = itchat.get_head_img(userName = friend['UserName'])
if(os.path.exists(imgFile) == False):
with open(imgFile,'wb') as file:
file.write(imgData)
# Detect Faces
time.sleep(1)
result = faceApi.detectFace(imgFile)
if result == True:
use_face += 1
else:
not_use_face += 1
# Extract Tags
result = faceApi.extractTags(imgFile)
image_tags += ','.join(list(map(lambda x:x['tag_name'],result)))
labels = [u'使用人臉頭像',u'不使用人臉頭像']
counts = [use_face,not_use_face]
colors = ['red','yellowgreen','lightskyblue']
plt.figure(figsize=(8,5), dpi=80)
plt.axes(aspect=1)
plt.pie(counts, #性別統計結果
labels=labels, #性別展示標簽
colors=colors, #餅圖區域配色
labeldistance = 1.1, #標簽距離圓點距離
autopct = '%3.1f%%', #餅圖區域文本格式
shadow = False, #餅圖是否顯示陰影
startangle = 90, #餅圖起始角度
pctdistance = 0.6 #餅圖區域文本距離圓點距離
)
plt.legend(loc='upper right',)
plt.title(u'%s的微信好友使用人臉頭像情況' % friends[0]['NickName'])
plt.show()
image_tags = image_tags.encode('iso8859-1').decode('utf-8')
back_coloring = np.array(Image.open('face.jpg'))
wordcloud = WordCloud(
font_path='simfang.ttf',
background_color="white",
max_words=1200,
mask=back_coloring,
max_font_size=75,
random_state=45,
width=800,
height=480,
margin=15
)
wordcloud.generate(image_tags)
plt.imshow(wordcloud)
plt.axis("off")
plt.show()
這裡我們會在當前目錄新建一個HeadImages目錄,用於存儲所有好友的頭像,然後我們這裡會用到一個名為FaceApi類,這個類由騰訊優圖的SDK封裝而來,這裡分別調用了人臉檢測和圖像標簽識別兩個API接口,前者會統計”使用人臉頭像”和”不使用人臉頭像”的好友各自的數目,後者會累加每個頭像中提取出來的標簽。其分析結果如下圖所示:
可以注意到,在所有微信好友中,約有接近1/4的微信好友使用了人臉頭像, 而有接近3/4的微信好友沒有人臉頭像,這說明在所有微信好友中對”顏值 “有自信的人,僅僅占到好友總數的25%,或者說75%的微信好友行事風格偏低調為主,不喜歡用人臉頭像做微信頭像。
其次,考慮到騰訊優圖並不能真正的識別”人臉”,我們這裡對好友頭像中的標簽再次進行提取,來幫助我們了解微信好友的頭像中有哪些關鍵詞,其分析結果如圖所示:
通過詞雲,我們可以發現:在微信好友中的簽名詞雲中,出現頻率相對較高的關鍵字有:女孩、樹木、房屋、文本、截圖、卡通、合影、天空、大海。這說明在我的微信好友中,好友選擇的微信頭像主要有日常、旅游、風景、截圖四個來源。
好友選擇的微信頭像中風格以卡通為主,好友選擇的微信頭像中常見的要素有天空、大海、房屋、樹木。通過觀察所有好友頭像,我發現在我的微信好友中,使用個人照片作為微信頭像的有15人,使用網絡圖片作為微信頭像的有53人,使用動漫圖片作為微信頭像的有25人,使用合照圖片作為微信頭像的有3人,使用孩童照片作為微信頭像的有5人,使用風景圖片作為微信頭像的有13人,使用女孩照片作為微信頭像的有18人,基本符合圖像標簽提取的分析結果。
04
好友簽名
分析好友簽名,簽名是好友信息中最為豐富的文本信息,按照人類慣用的”貼標簽”的方法論,簽名可以分析出某一個人在某一段時間裡狀態,就像人開心了會笑、哀傷了會哭,哭和笑兩種標簽,分別表明了人開心和哀傷的狀態。
這裡我們對簽名做兩種處理,第一種是使用結巴分詞進行分詞後生成詞雲,目的是了解好友簽名中的關鍵字有哪些,哪一個關鍵字出現的頻率相對較高;第二種是使用SnowNLP分析好友簽名中的感情傾向,即好友簽名整體上是表現為正面的、負面的還是中立的,各自的比重是多少。這裡提取Signature字段即可,其核心代碼如下:
def analyseSignature(friends):
signatures = ''
emotions = []
pattern = re.compile("1f\d.+")
for friend in friends:
signature = friend['Signature']
if(signature != None):
signature = signature.strip().replace('span', '').replace('class', '').replace('emoji', '')
signature = re.sub(r'1f(\d.+)','',signature)
if(len(signature)>0):
nlp = SnowNLP(signature)
emotions.append(nlp.sentiments)
signatures += ' '.join(jieba.analyse.extract_tags(signature,5))
with open('signatures.txt','wt',encoding='utf-8') as file:
file.write(signatures)
# Sinature WordCloud
back_coloring = np.array(Image.open('flower.jpg'))
wordcloud = WordCloud(
font_path='simfang.ttf',
background_color="white",
max_words=1200,
mask=back_coloring,
max_font_size=75,
random_state=45,
width=960,
height=720,
margin=15
)
wordcloud.generate(signatures)
plt.imshow(wordcloud)
plt.axis("off")
plt.show()
wordcloud.to_file('signatures.jpg')
# Signature Emotional Judgment
count_good = len(list(filter(lambda x:x>0.66,emotions)))
count_normal = len(list(filter(lambda x:x>=0.33 and x<=0.66,emotions)))
count_bad = len(list(filter(lambda x:x<0.33,emotions)))
labels = [u'負面消極',u'中性',u'正面積極']
values = (count_bad,count_normal,count_good)
plt.rcParams['font.sans-serif'] = ['simHei']
plt.rcParams['axes.unicode_minus'] = False
plt.xlabel(u'情感判斷')
plt.ylabel(u'頻數')
plt.xticks(range(3),labels)
plt.legend(loc='upper right',)
plt.bar(range(3), values, color = 'rgb')
plt.title(u'%s的微信好友簽名信息情感分析' % friends[0]['NickName'])
plt.show()
通過詞雲,我們可以發現:在微信好友的簽名信息中,出現頻率相對較高的關鍵詞有:努力、長大、美好、快樂、生活、幸福、人生、遠方、時光、散步。
通過以下柱狀圖,我們可以發現:在微信好友的簽名信息中,正面積極的情感判斷約占到55.56%,中立的情感判斷約占到32.10%,負面消極的情感判斷約占到12.35%。這個結果和我們通過詞雲展示的結果基本吻合,這說明在微信好友的簽名信息中,約有87.66%的簽名信息,傳達出來都是一種積極向上的態度。
05
好友位置
分析好友位置,主要通過提取Province和City這兩個字段。Python中的地圖可視化主要通過Basemap模塊,這個模塊需要從國外網站下載地圖信息,使用起來非常的不便。
百度的ECharts在前端使用的比較多,雖然社區裡提供了pyecharts項目,可我注意到因為政策的改變,目前Echarts不再支持導出地圖的功能,所以地圖的定制方面目前依然是一個問題,主流的技術方案是配置全國各省市的JSON數據。
這裡我使用的是BDP個人版,這是一個零編程的方案,我們通過Python導出一個CSV文件,然後將其上傳到BDP中,通過簡單拖拽就可以制作可視化地圖,簡直不能再簡單,這裡我們僅僅展示生成CSV部分的代碼:
def analyseLocation(friends):
headers = ['NickName','Province','City']
with open('location.csv','w',encoding='utf-8',newline='',) as csvFile:
writer = csv.DictWriter(csvFile, headers)
writer.writeheader()
for friend in friends[1:]:
row = {}
row['NickName'] = friend['NickName']
row['Province'] = friend['Province']
row['City'] = friend['City']
writer.writerow(row)
下圖是BDP中生成的微信好友地理分布圖,可以發現:我的微信好友主要集中在寧夏和陝西兩個省份。
06
這篇文章是我對數據分析的又一次嘗試,主要從性別、頭像、簽名、位置四個維度,對微信好友進行了一次簡單的數據分析,主要采用圖表和詞雲兩種形式來呈現結果。總而言之一句話,”數據可視化是手段而並非目的”,重要的不是我們在這裡做了這些圖出來,而是從這些圖裡反映出來的現象,我們能夠得到什麼本質上的啟示,希望這篇文章能讓大家有所啟發。
【python學習】
學Python的伙伴,歡迎加入新的交流【君羊】:1020465983
一起探討編程知識,成為大神,群裡還有軟件安裝包,實戰案例、學習資料