程序師世界是廣大編程愛好者互助、分享、學習的平台,程序師世界有你更精彩!
首頁
編程語言
C語言|JAVA編程
Python編程
網頁編程
ASP編程|PHP編程
JSP編程
數據庫知識
MYSQL數據庫|SqlServer數據庫
Oracle數據庫|DB2數據庫
您现在的位置: 程式師世界 >> 編程語言 >  >> 更多編程語言 >> Python

Pandas: Pandas advanced tutorial take the real data of Titanic as an example

編輯:Python

brief introduction

Today we will talk about Pandas An advanced tutorial for , Include read and write files 、 Select subsets and graphical representation, etc .

Read and write files

A key step in data processing is to read files for analysis , Then write the analysis result to the file again .

Pandas Supports multiple file formats for reading and writing :

In [108]: pd.read_
read_clipboard() read_excel() read_fwf() read_hdf() read_json read_parquet read_sas read_sql_query read_stata
read_csv read_feather() read_gbq() read_html read_msgpack read_pickle read_sql read_sql_table read_table

Next, we'll take Pandas Provided by the official website Titanic.csv For example to explain Pandas Use .

Titanic.csv Provides 800 Information about multiple passengers on Titan little , It's a 891 rows x 12 columns Matrix .

We use Pandas To read this csv:

In [5]: titanic=pd.read_csv("titanic.csv")

read_csv Methods will csv File conversion to pandas Of DataFrame.

By default, we use DF Variable , Before the show 5 After the row and 5 Row data :

In [3]: titanic
Out[3]:
PassengerId Survived Pclass Name Sex ... Parch Ticket Fare Cabin Embarked
0 1 0 3 Braund, Mr. Owen Harris male ... 0 A/5 21171 7.2500 NaN S
1 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th... female ... 0 PC 17599 71.2833 C85 C
2 3 1 3 Heikkinen, Miss. Laina female ... 0 STON/O2. 3101282 7.9250 NaN S
3 4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female ... 0 113803 53.1000 C123 S
4 5 0 3 Allen, Mr. William Henry male ... 0 373450 8.0500 NaN S
.. ... ... ... ... ... ... ... ... ... ... ...
886 887 0 2 Montvila, Rev. Juozas male ... 0 211536 13.0000 NaN S
887 888 1 1 Graham, Miss. Margaret Edith female ... 0 112053 30.0000 B42 S
888 889 0 3 Johnston, Miss. Catherine Helen "Carrie" female ... 2 W./C. 6607 23.4500 NaN S
889 890 1 1 Behr, Mr. Karl Howell male ... 0 111369 30.0000 C148 C
890 891 0 3 Dooley, Mr. Patrick male ... 0 370376 7.7500 NaN Q
[891 rows x 12 columns]

have access to head(n) and tail(n) To specify a specific number of rows :

In [4]: titanic.head(8)
Out[4]:
PassengerId Survived Pclass Name Sex ... Parch Ticket Fare Cabin Embarked
0 1 0 3 Braund, Mr. Owen Harris male ... 0 A/5 21171 7.2500 NaN S
1 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th... female ... 0 PC 17599 71.2833 C85 C
2 3 1 3 Heikkinen, Miss. Laina female ... 0 STON/O2. 3101282 7.9250 NaN S
3 4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female ... 0 113803 53.1000 C123 S
4 5 0 3 Allen, Mr. William Henry male ... 0 373450 8.0500 NaN S
5 6 0 3 Moran, Mr. James male ... 0 330877 8.4583 NaN Q
6 7 0 1 McCarthy, Mr. Timothy J male ... 0 17463 51.8625 E46 S
7 8 0 3 Palsson, Master. Gosta Leonard male ... 1 349909 21.0750 NaN S
[8 rows x 12 columns]

Use dtypes You can see the data type of each column :

In [5]: titanic.dtypes
Out[5]:
PassengerId int64
Survived int64
Pclass int64
Name object
Sex object
Age float64
SibSp int64
Parch int64
Ticket object
Fare float64
Cabin object
Embarked object
dtype: object

Use to_excel Can be DF Convert to excel file , Use read_excel Can read again excel file :

In [11]: titanic.to_excel('titanic.xlsx', sheet_name='passengers', index=False)
In [12]: titanic = pd.read_excel('titanic.xlsx', sheet_name='passengers')

Use info() You can come to DF Make a preliminary statistic :

In [14]: titanic.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
PassengerId 891 non-null int64
Survived 891 non-null int64
Pclass 891 non-null int64
Name 891 non-null object
Sex 891 non-null object
Age 714 non-null float64
SibSp 891 non-null int64
Parch 891 non-null int64
Ticket 891 non-null object
Fare 891 non-null float64
Cabin 204 non-null object
Embarked 889 non-null object
dtypes: float64(2), int64(5), object(5)
memory usage: 83.6+ KB

DF The choice of

Select column data

DF Of head perhaps tail Method can only display all column data , The following method can select specific column data .

In [15]: ages = titanic["Age"]
In [16]: ages.head()
Out[16]:
0 22.0
1 38.0
2 26.0
3 35.0
4 35.0
Name: Age, dtype: float64

Each column is a Series:

In [6]: type(titanic["Age"])
Out[6]: pandas.core.series.Series
In [7]: titanic["Age"].shape
Out[7]: (891,)

You can choose more than one :

In [8]: age_sex = titanic[["Age", "Sex"]]
In [9]: age_sex.head()
Out[9]:
Age Sex
0 22.0 male
1 38.0 female
2 26.0 female
3 35.0 female
4 35.0 male

If you choose multiple columns , The result returned is a DF type :

In [10]: type(titanic[["Age", "Sex"]])
Out[10]: pandas.core.frame.DataFrame
In [11]: titanic[["Age", "Sex"]].shape
Out[11]: (891, 2)

Select row data

Above we talked about how to select column data , Now let's see how to select row data :

Choose a client older than 35 Year old :

In [12]: above_35 = titanic[titanic["Age"] > 35]
In [13]: above_35.head()
Out[13]:
PassengerId Survived Pclass Name Sex ... Parch Ticket Fare Cabin Embarked
1 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th... female ... 0 PC 17599 71.2833 C85 C
6 7 0 1 McCarthy, Mr. Timothy J male ... 0 17463 51.8625 E46 S
11 12 1 1 Bonnell, Miss. Elizabeth female ... 0 113783 26.5500 C103 S
13 14 0 3 Andersson, Mr. Anders Johan male ... 5 347082 31.2750 NaN S
15 16 1 2 Hewlett, Mrs. (Mary D Kingcome) female ... 0 248706 16.0000 NaN S
[5 rows x 12 columns]

Use isin choice Pclass stay 2 and 3 All of our customers :

In [16]: class_23 = titanic[titanic["Pclass"].isin([2, 3])]
In [17]: class_23.head()
Out[17]:
PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
0 1 0 3 Braund, Mr. Owen Harris male 22.0 1 0 A/5 21171 7.2500 NaN S
2 3 1 3 Heikkinen, Miss. Laina female 26.0 0 0 STON/O2. 3101282 7.9250 NaN S
4 5 0 3 Allen, Mr. William Henry male 35.0 0 0 373450 8.0500 NaN S
5 6 0 3 Moran, Mr. James male NaN 0 0 330877 8.4583 NaN Q
7 8 0 3 Palsson, Master. Gosta Leonard male 2.0 3 1 349909 21.0750 NaN S

above isin be equal to :

In [18]: class_23 = titanic[(titanic["Pclass"] == 2) | (titanic["Pclass"] == 3)]

Screening Age It's not empty :

In [20]: age_no_na = titanic[titanic["Age"].notna()]
In [21]: age_no_na.head()
Out[21]:
PassengerId Survived Pclass Name Sex ... Parch Ticket Fare Cabin Embarked
0 1 0 3 Braund, Mr. Owen Harris male ... 0 A/5 21171 7.2500 NaN S
1 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th... female ... 0 PC 17599 71.2833 C85 C
2 3 1 3 Heikkinen, Miss. Laina female ... 0 STON/O2. 3101282 7.9250 NaN S
3 4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female ... 0 113803 53.1000 C123 S
4 5 0 3 Allen, Mr. William Henry male ... 0 373450 8.0500 NaN S
[5 rows x 12 columns]

Select both rows and columns

We can select both rows and columns .

Use loc and iloc You can select rows and columns , The difference between them is loc It's choosing by name ,iloc It's using numbers to choose .

choice age>35 Name of passenger :

In [23]: adult_names = titanic.loc[titanic["Age"] > 35, "Name"]
In [24]: adult_names.head()
Out[24]:
1 Cumings, Mrs. John Bradley (Florence Briggs Th...
6 McCarthy, Mr. Timothy J
11 Bonnell, Miss. Elizabeth
13 Andersson, Mr. Anders Johan
15 Hewlett, Mrs. (Mary D Kingcome)
Name: Name, dtype: object

loc The first value in represents the row selection , The second value represents the column selection .

Use iloc Make a selection :

In [25]: titanic.iloc[9:25, 2:5]
Out[25]:
Pclass Name Sex
9 2 Nasser, Mrs. Nicholas (Adele Achem) female
10 3 Sandstrom, Miss. Marguerite Rut female
11 1 Bonnell, Miss. Elizabeth female
12 3 Saundercock, Mr. William Henry male
13 3 Andersson, Mr. Anders Johan male
.. ... ... ...
20 2 Fynney, Mr. Joseph J male
21 2 Beesley, Mr. Lawrence male
22 3 McGowan, Miss. Anna "Annie" female
23 1 Sloper, Mr. William Thompson male
24 3 Palsson, Miss. Torborg Danira female
[16 rows x 3 columns]

Use plots Make a picture

How to DF Convert it into a variety of graphic display ?

To use it on the command line matplotlib Make a picture , So you need to start ipython Of QT Environmental Science :

ipython qtconsole --pylab=inline

Use it directly plot Let's show the passenger information we read above :

import matplotlib.pyplot as plt
import pandas as pd
titanic = pd.read_excel('titanic.xlsx', sheet_name='passengers')
titanic.plot()

The abscissa is DF Medium index, The column coordinates are the names of the columns . Note that the above column only shows numerical type .

We just show age Information :

titanic['Age'].plot()

The default is the histogram , We can change the form of graphics , Like the dot graph :

titanic.plot.scatter(x="PassengerId",y="Age", alpha=0.5)

Select... In the data PassengerId As x Axis ,age As y Axis :

Except for the scatter plot , Many other images are also supported :

[method_name for method_name in dir(titanic.plot) if not method_name.startswith("_")]
Out[11]:
['area',
'bar',
'barh',
'box',
'density',
'hexbin',
'hist',
'kde',
'line',
'pie',
'scatter']

Then look at one box chart :

titanic['Age'].plot.box()

You can see , Most of the passengers' ages are concentrated in 20-40 Between the ages of .

You can also draw and display the selected columns separately :

titanic.plot.area(figsize=(12, 4), subplots=True)

Specify a specific column :

titanic[['Age','Pclass']].plot.area(figsize=(12, 4), subplots=True)

You can also draw pictures first , Then fill in :

fig, axs = plt.subplots(figsize=(12, 4));

First draw an empty picture , And then fill it in :

titanic['Age'].plot.area(ax=axs);
axs.set_ylabel("Age");
fig

Create a new column using an existing column

occasionally , We need to transform the existing columns , To get a new column , For example, we want to add a Age2 Column , Its value is Age Column +10, You can do this :

titanic["Age2"]=titanic["Age"]+10;
titanic[["Age","Age2"]].head()
Out[34]:
Age Age2
0 22.0 32.0
1 38.0 48.0
2 26.0 36.0
3 35.0 45.0
4 35.0 45.0

You can also rename Columns :

titanic_renamed = titanic.rename(
...: columns={"Age": "Age2",
...: "Pclass": "Pclas2"})

Convert column names to lowercase :

titanic_renamed = titanic_renamed.rename(columns=str.lower)

Make statistics

Let's count the average age of the passengers :

titanic["Age"].mean()
Out[35]: 29.69911764705882

Choose the median :

titanic[["Age", "Fare"]].median()
Out[36]:
Age 28.0000
Fare 14.4542
dtype: float64

For more information :

titanic[["Age", "Fare"]].describe()
Out[37]:
Age Fare
count 714.000000 891.000000
mean 29.699118 32.204208
std 14.526497 49.693429
min 0.420000 0.000000
25% 20.125000 7.910400
50% 28.000000 14.454200
75% 38.000000 31.000000
max 80.000000 512.329200

Use agg Specify a specific aggregation method :

titanic.agg({'Age': ['min', 'max', 'median', 'skew'],'Fare': ['min', 'max', 'median', 'mean']})
Out[38]:
Age Fare
max 80.000000 512.329200
mean NaN 32.204208
median 28.000000 14.454200
min 0.420000 0.000000
skew 0.389108 NaN

have access to groupby:

titanic[["Sex", "Age"]].groupby("Sex").mean()
Out[39]:
Age
Sex
female 27.915709
male 30.726645

groupby All columns :

titanic.groupby("Sex").mean()
Out[40]:
PassengerId Survived Pclass Age SibSp Parch
Sex
female 431.028662 0.742038 2.159236 27.915709 0.694268 0.649682
male 454.147314 0.188908 2.389948 30.726645 0.429809 0.235702 

groupby You can then select specific columns :

titanic.groupby("Sex")["Age"].mean()
Out[41]:
Sex
female 27.915709
male 30.726645
Name: Age, dtype: float64

It can be classified count:

titanic["Pclass"].value_counts()
Out[42]:
3 491
1 216
2 184
Name: Pclass, dtype: int64

It's equivalent to :

titanic.groupby("Pclass")["Pclass"].count()

DF restructuring

You can sort by a column :

titanic.sort_values(by="Age").head()
Out[43]:
PassengerId Survived Pclass Name Sex \
803 804 1 3 Thomas, Master. Assad Alexander male
755 756 1 2 Hamalainen, Master. Viljo male
644 645 1 3 Baclini, Miss. Eugenie female
469 470 1 3 Baclini, Miss. Helene Barbara female
78 79 1 2 Caldwell, Master. Alden Gates male 

Sort by multiple columns :

titanic.sort_values(by=['Pclass', 'Age'], ascending=False).head()
Out[44]:
PassengerId Survived Pclass Name Sex Age \
851 852 0 3 Svensson, Mr. Johan male 74.0
116 117 0 3 Connors, Mr. Patrick male 70.5
280 281 0 3 Duane, Mr. Frank male 65.0
483 484 1 3 Turkula, Mrs. (Hedwig) female 63.0
326 327 0 3 Nysveen, Mr. Johan Hansen male 61.0 

Select specific row and column data , In the following example, we will select some data whose gender is female :

female=titanic[titanic['Sex']=='female']
female_subset=female[["Age","Pclass","PassengerId","Survived"]].sort_values(["Pclass"]).groupby(["Pclass"]).head(2)
female_subset
Out[58]:
Age Pclass PassengerId Survived
1 38.0 1 2 1
356 22.0 1 357 1
726 30.0 2 727 1
443 28.0 2 444 1
855 18.0 3 856 1
654 18.0 3 655 0

Use pivot You can do the axis conversion :

female_subset.pivot(columns="Pclass", values="Age")
Out[62]:
Pclass 1 2 3
1 38.0 NaN NaN
356 22.0 NaN NaN
443 NaN 28.0 NaN
654 NaN NaN 18.0
726 NaN 30.0 NaN
855 NaN NaN 18.0
female_subset.pivot(columns="Pclass", values="Age").plot()

This article has been included in http://www.flydean.com/02-python-pandas-advanced/ The most popular interpretation , The deepest dry goods , The most concise tutorial , There are so many tricks you don't know about waiting for you to discover ! Welcome to my official account. :「 Program those things 」, Know technology , Know you better !


  1. 上一篇文章:
  2. 下一篇文章:
Copyright © 程式師世界 All Rights Reserved