1.Series Introduce
2.Series establish
1.pd.Series([list],index=[list])
2.pd.Series(np.arange())
3 Series Basic attributes
4 Indexes
5 Calculation 、 Descriptive statistics
6 Sort
summary
1.Series IntroducePandas There are two main data structures for modules :1.Series 2.DataFrame
Series It's a one-dimensional array , be based on Numpy Of ndarray structure
Series([data, index, dtype, name, copy, …]) # One-dimensional ndarray with axis labels (including time series).
2.Series establish import Pandas as pd import numpy as np
1.pd.Series([list],index=[list])Parameter is list ,index Is an optional parameter , If it is not filled in, the default value is index from 0 Start
obj = pd.Series([4, 7, -5, 3, 7, np.nan])obj
The output is :
2.pd.Series(np.arange())0 4.0
1 7.0
2 -5.0
3 3.0
4 7.0
5 NaN
dtype: float64
arr = np.arange(6)s = pd.Series(arr)s
The output is :
0 0
1 1
2 2
3 3
4 4
5 5
dtype: int32
pd.Series({dict})d = {'a':10,'b':20,'c':30,'d':40,'e':50}s = pd.Series(d)s
The output is :
a 10
b 20
c 30
d 40
e 50
dtype: int64
Can pass DataFrame Create a sequence in a row or column
3 Series Basic attributesSeries.values:Return Series as ndarray or ndarray-like depending on the dtype
obj.values# array([ 4., 7., -5., 3., 7., nan])
Series.index:The index (axis labels) of the Series.
obj.index# RangeIndex(start=0, stop=6, step=1)
Series.name:Return name of the Series.
4 IndexesSeries.loc:Access a group of rows and columns by label(s) or a boolean array.
Series.iloc:Purely integer-location based indexing for selection by position.
5 Calculation 、 Descriptive statisticsSeries.value_counts:Return a Series containing counts of unique values.
index = ['Bob', 'Steve', 'Jeff', 'Ryan', 'Jeff', 'Ryan'] obj = pd.Series([4, 7, -5, 3, 7, np.nan],index = index)obj.value_counts()
The output is :
6 Sort7.0 2
3.0 1
-5.0 1
4.0 1
dtype: int64
Series.sort_values
Series.sort_values(self, axis=0, ascending=True, inplace=False, kind='quicksort', na_position='last')
Parameters:
ParametersDescription axis{0 or ‘index’}, default 0,Axis to direct sorting. The value ‘index’ is accepted for compatibility with DataFrame.sort_values.ascendinbool, default True,If True, sort values in ascending order, otherwise descending.inplacebool, default FalseIf True, perform operation in-place.kind{‘quicksort’, ‘mergesort’ or ‘heapsort’}, default ‘quicksort’Choice of sorting algorithm. See also numpy.sort() for more information. ‘mergesort’ is the only stable algorithm.na_position{‘first’ or ‘last’}, default ‘last’,Argument ‘first’ puts NaNs at the beginning, ‘last’ puts NaNs at the end.Returns:
Series:Series ordered by values.
obj.sort_values()
The output is :
Jeff -5.0
Ryan 3.0
Bob 4.0
Steve 7.0
Jeff 7.0
Ryan NaN
dtype: float64
Series.rank
Series.rank(self, axis=0, method='average', numeric_only=None, na_option='keep', ascending=True, pct=False)[source]
Parameters:
ParametersDescription axis{0 or ‘index’, 1 or ‘columns’}, default 0Index to direct ranking.method{‘average’, ‘min’, ‘max’, ‘first’, ‘dense’}, default ‘average’How to rank the group of records that have the same value (i.e. ties): average, average rank of the group; min: lowest rank in the group; max: highest rank in the group; first: ranks assigned in order they appear in the array; dense: like ‘min’, but rank always increases by 1,between groupsnumeric_onlybool, optional,For DataFrame objects, rank only numeric columns if set to True.na_option{‘keep’, ‘top’, ‘bottom’}, default ‘keep’, How to rank NaN values:;keep: assign NaN rank to NaN values; top: assign smallest rank to NaN values if ascending; bottom: assign highest rank to NaN values if ascendingascendingbool, default True Whether or not the elements should be ranked in ascending order.pctbool, default False Whether or not to display the returned rankings in percentile form.Returns:
same type as caller :Return a Series or DataFrame with data ranks as values.
# obj.rank() # From big to small row ,NaN still NaNobj.rank(method='dense') # obj.rank(method='min')# obj.rank(method='max')# obj.rank(method='first')# obj.rank(method='dense')
The output is :
summaryBob 3.0
Steve 4.0
Jeff 1.0
Ryan 2.0
Jeff 4.0
Ryan NaN
dtype: float64
This is about Python Data processing pd.Series() This is the end of the article on the basic use of functions , More about Python pd.Series() Please search the previous articles of software development network or continue to browse the relevant articles below. I hope you will support software development network more in the future !