程序師世界是廣大編程愛好者互助、分享、學習的平台,程序師世界有你更精彩!
首頁
編程語言
C語言|JAVA編程
Python編程
網頁編程
ASP編程|PHP編程
JSP編程
數據庫知識
MYSQL數據庫|SqlServer數據庫
Oracle數據庫|DB2數據庫
您现在的位置: 程式師世界 >> 編程語言 >  >> 更多編程語言 >> Python

1. Python quantitative transaction - numpy of the three swordsmen

編輯:Python

Catalog

  • One 、 Environmental installation
    • 1 - anaconda install
    • 2 - jupyter Introduce
    • 3 - cell brief introduction
    • 4 - cell Shortcut key
  • Two 、numpy Three ways to create
    • 1 - np.array establish numpy
    • 2 - plt.imread establish numpy
    • 3 - Use np Of routines Function creation
  • 3、 ... and 、numpy Common properties
  • Four 、numpy operation
    • 1 - numpy Index operation
    • 2 - numpy Slicing operation
    • 3 - reshape deformation
    • 4 - Cascade operation
    • 5 - Aggregation operation
    • 6 - Mathematical functions
    • 7 - Statistical function
  • 5、 ... and 、numpy matrix
  • 6、 ... and 、jupyter note

One 、 Environmental installation

1 - anaconda install

  • anaconda brief introduction :anaconda It's an integrated environment —— It integrates all the environments needed in data analysis and machine learning
  • anaconda Official website :www.anaconda.com
  • anaconda download : Tsinghua University image -anaconda, Drag it to the bottom , choice “Anaconda3-5.3.1-Windows-x86_64.exe”
  • anaconda install :anaconda The installation directory cannot have Chinese and special symbols ; All the way Next, Check “Add Anaconda…” and “Register Anaconda…”
  • anaconda Test the installation for success : open cmd window , entry jupyter notebook Instructions , If the command cannot be found is not displayed and no error is reported, the installation is successful

2 - jupyter Introduce

  • What is? jupyter:jupyter Namely anaconda Provides a browser based visual development tool
  • jupyter start-up : Start the terminal , Then navigate to the specified directory ( In which directory to start , When the time comes jupyter The project of is in which directory ); Enter... In the terminal :jupyter notebook, Press enter
  • newly build python3:python3 yes anaconda Source files in
  • anaconda Duplicate file name
  • Returning to the previous level, you can see that there is one more aaaa.ipynb The file of ,ipynb It's based on anaconda A document of

3 - cell brief introduction

  • What is? cell
  • cell There are two patterns :code Pattern 、markdown Pattern
  • cell Mode switching

4 - cell Shortcut key

  • add to cell:a= At present cell Add a... Above cell,b= At present cell Add a... Below cell
  • Delete cell:x
  • cell Mode modification :m=markdown Pattern ,y=code Pattern
  • cell perform :shift+enter
  • tab: Automatic completion
  • Open help document :shift+tab

Two 、numpy Three ways to create

  • Data analysis three swordsmen
    • numpy
    • pandas( a key )
    • matplotlib
  • What is? numpy:NumPy(Numerical Python) yes Python Language is the base of scientific computing . It's about numerical calculation , Most of them Python The foundation of Scientific Computing Library , Mostly used in large 、 Numerical operations performed on multidimensional arrays

1 - np.array establish numpy

  • np.array() establish numpy

    • param1:object —— data source
    • param2:dttype —— The type of array element , The default value is the type passed in from the initial data source
  • What is the difference between an array and a list

    • The data element type stored in the array must be a uniform type
    • Not specified dttype when , Determine the array element type according to the element type priority —— character string > floating-point > Integers

2 - plt.imread establish numpy

  • Load an external picture to numpy Array , Then try changing the values of the array elements , See the impact on the original picture
    • If there's a mistake here , Need to install pillow,cmd perform :pip install pillow

3 - Use np Of routines Function creation

  • np Of routines function
    • zero(): fill 0 Array of
    • ones(): fill 1 Array of
    • linespace()
    • arange()
    • random series
  • np.ones
    • param1:shape —— Dimension of array —— Shape of the new array, e.g., (2, 3) or 2
  • np.linspace: establish A one-dimensional An array of arithmetical sequences of
  • np.arange: establish A one-dimensional A sequence of equal differences
  • np.random.randint: Create random arrays

3、 ... and 、numpy Common properties

  • attribute
    • shape: Return array shape
    • ndim: Return array dimension
    • size: Returns the number of array elements
    • dtype: Array element type
    • type(arr): Data type of array

Four 、numpy operation

1 - numpy Index operation

  • numpy Index operation is the same as list operation

2 - numpy Slicing operation

  • section : Row and column slice
    • Cut out the first two rows of data
    • Cut out the first two columns of data
    • Cut out the data of the first two columns of the first two rows
  • section : Array data flipping ( The horse )
  • Original picture
  • practice : Flip a picture up, down, left and right
  • practice : Crop the picture in the specified area

3 - reshape deformation

4 - Cascade operation

  • What is cascade operation : Will be multiple numpy Array ( The dimensions must be the same ) Transverse or longitudinal splicing
  • axis Axial understanding :0 —— Column ;1 —— That's ok

5 - Aggregation operation

  • Common aggregation operations : No, axis Parameters —— Please all ;axis=0 —— By column ;axis=1 —— Press the line
    • sum: Sum up
    • max: Maximum
    • min: minimum value
    • mean: Average

6 - Mathematical functions

  • numpy Standard trigonometric functions :sin()、cos()、tan()
  • numpy.around(a, decimals): Function returns the rounding value of a specified number
    • Parameters a: Array
    • Parameters decimals: The number of decimal places rounded ; The default value is 0; If a negative , Integers are rounded to the left of the decimal point

7 - Statistical function

  • Commonly used statistical functions
    • numpy.amin() and numpy.amax(), Used to calculate the smallest number of elements in an array along a specified axis 、 Maximum
    • numpy.ptp(): Calculates the difference between the maximum value and the minimum value of an element in an array ( Maximum - minimum value )
    • numpy.median() Function to evaluate an array a The median of the middle elements ( The median )
    • Standard deviation std(): Standard deviation is a measure of the dispersion of the average of a set of data .
      • The formula :std = sqrt(mean((x - x.mean())**2))
      • If the array is [1,2,3,4], Then the average value is 2.5. therefore , The square of the difference is [2.25,0.25,0.25,2.25], And the square of the average is 4, namely sqrt(5/4) , The result is 1.1180339887498949.
    • variance var(): Variance in Statistics ( Sample variance ) Is the average of the square of the difference between each sample value and the average of all sample values , namely mean((x - x.mean())** 2). let me put it another way , The standard deviation is the square root of variance

5、 ... and 、numpy matrix

  • Linear algebra is based on the derivation of matrices :https://www.cnblogs.com/alantu2018/p/8528299.html
  • numpy matrix
    • NumPy Contains a matrix library numpy.matlib, The function in this module returns a matrix , instead of ndarray object . One The matrix of is a matrix composed of rows (row) Column (column) A rectangular array of elements
    • numpy.matlib.identity() Function returns the unit matrix of a given size . Unit matrix is a square matrix , The diagonal from the top left to the bottom right ( Called the main diagonal ) The elements on are 1, All but 0

  • numpy matrix multiplication :numpy.dot(a, b, out=None)
    • a:ndarray Array
    • b:ndarray Array
  • Addition of matrix 、 Subtraction 、 Multiplication
  • matrix multiplication : Every number in the first row of the first matrix (2 and 1), Multiply each by the number in the first column of the second matrix (1 and 1), Then add the product ( 2 x 1 + 1 x 1), Get the value of the upper left corner of the result matrix 3. in other words , The result matrix is the second m Lines and n The value at which the columns intersect , It's equal to the first matrix m The row is the same as the second matrix n Column , The sum of the products of each value of the corresponding position


6、 ... and 、jupyter note

Click to download jupyter note


  1. 上一篇文章:
  2. 下一篇文章:
Copyright © 程式師世界 All Rights Reserved