程序師世界是廣大編程愛好者互助、分享、學習的平台,程序師世界有你更精彩!
首頁
編程語言
C語言|JAVA編程
Python編程
網頁編程
ASP編程|PHP編程
JSP編程
數據庫知識
MYSQL數據庫|SqlServer數據庫
Oracle數據庫|DB2數據庫
您现在的位置: 程式師世界 >> 編程語言 >  >> 更多編程語言 >> Python

Did you really do the standard push ups? Dare you test it in Python

編輯:Python

Preface :

At the Winter Olympics , Gu ailing “ soar up into the sky with one start ”, Su Yiming “ Set the Thames a great coup ”, Short track speed skating dream team “ Walk the line ”…… Athletes challenge the limits 、 The spirit of climbing the summit has aroused the enthusiasm of countless audiences !

These athletes who ignite the Winter Olympic Stadium , It is full of vigorous youth , Writing a passionate life legend .

Ask every day , Do you keep exercising ?

You can work out in the right way ?

Text :

In the Singapore Army , There is a test called IPPT( Personal physical fitness test ). The difficulty of this test is not how high it requires physical strength , It's the electronic machine used to calculate the number of push ups and sit ups .

Like most people , My push ups are always below standard ( According to the advice of the machine ). Besides , Due to the lack of practice referring to machine standards , many NSMen( People who have completed two years of compulsory service ) stay IPPT It's hard to get good results in tests .

therefore , I decided to use mediapipe and OpenCV Create a program , Follow our push ups , Make sure every push up we do is up to standard .

from mediapipe Limb joints detected by posture module

import cv2
import mediapipe as mp
import math
class poseDetector() :
def __init__(self, mode=False, complexity=1, smooth_landmarks=True,
enable_segmentation=False, smooth_segmentation=True,
detectionCon=0.5, trackCon=0.5):
self.mode = mode
self.complexity = complexity
self.smooth_landmarks = smooth_landmarks
self.enable_segmentation = enable_segmentation
self.smooth_segmentation = smooth_segmentation
self.detectionCon = detectionCon
self.trackCon = trackCon
self.mpDraw = mp.solutions.drawing_utils
self.mpPose = mp.solutions.pose
self.pose = self.mpPose.Pose(self.mode, self.complexity, self.smooth_landmarks,
self.enable_segmentation, self.smooth_segmentation,
self.detectionCon, self.trackCon)
def findPose (self, img, draw=True):
imgRGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
self.results = self.pose.process(imgRGB)
if self.results.pose_landmarks:
if draw:
self.mpDraw.draw_landmarks(img,self.results.pose_landmarks,
self.mpPose.POSE_CONNECTIONS)
return img
def findPosition(self, img, draw=True):
self.lmList = []
if self.results.pose_landmarks:
for id, lm in enumerate(self.results.pose_landmarks.landmark):
#finding height, width of the image printed
h, w, c = img.shape
#Determining the pixels of the landmarks
cx, cy = int(lm.x * w), int(lm.y * h)
self.lmList.append([id, cx, cy])
if draw:
cv2.circle(img, (cx, cy), 5, (255,0,0), cv2.FILLED)
return self.lmList
def findAngle(self, img, p1, p2, p3, draw=True):
#Get the landmarks
x1, y1 = self.lmList[p1][1:]
x2, y2 = self.lmList[p2][1:]
x3, y3 = self.lmList[p3][1:]
#Calculate Angle
angle = math.degrees(math.atan2(y3-y2, x3-x2) -
math.atan2(y1-y2, x1-x2))
if angle < 0:
angle += 360
if angle > 180:
angle = 360 - angle
elif angle > 180:
angle = 360 - angle
# print(angle)
#Draw
if draw:
cv2.line(img, (x1, y1), (x2, y2), (255,255,255), 3)
cv2.line(img, (x3, y3), (x2, y2), (255,255,255), 3)
cv2.circle(img, (x1, y1), 5, (0,0,255), cv2.FILLED)
cv2.circle(img, (x1, y1), 15, (0,0,255), 2)
cv2.circle(img, (x2, y2), 5, (0,0,255), cv2.FILLED)
cv2.circle(img, (x2, y2), 15, (0,0,255), 2)
cv2.circle(img, (x3, y3), 5, (0,0,255), cv2.FILLED)
cv2.circle(img, (x3, y3), 15, (0,0,255), 2)
cv2.putText(img, str(int(angle)), (x2-50, y2+50),
cv2.FONT_HERSHEY_PLAIN, 2, (0,0,255), 2)
return angle
def main():
detector = poseDetector()
cap = cv2.VideoCapture(0)
while cap.isOpened():
ret, img = cap.read() #ret is just the return variable, not much in there that we will use.
if ret:
img = detector.findPose(img)
cv2.imshow('Pose Detection', img)
if cv2.waitKey(10) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
if __name__ == "__main__":
main()

The above is the code of this program .

The code above comes from PoseModule.py, There are several functions :

  • Activate mediapipe Pose detection module .

  • Test the human body .

  • Find the position of different limb joints on the human body according to the model .( The limbs are shown in the picture above ).

  • Find the angle between the joints ( It depends on the joint you choose ). For my push up program , I chose to find my elbow 、 The angle of the shoulders and hips , Because these are very important to the standard of push ups .

Next is the actual push up count code . We use PoseModule And determine a standard for whether push ups are qualified or not .


import cv2
import mediapipe as mp
import numpy as np
import PoseModule as pm
cap = cv2.VideoCapture(0)
detector = pm.poseDetector()
count = 0
direction = 0
form = 0
feedback = "Fix Form"
while cap.isOpened():
ret, img = cap.read() #640 x 480
#Determine dimensions of video - Help with creation of box in Line 43
width = cap.get(3) # float `width`
height = cap.get(4) # float `height`
# print(width, height)
img = detector.findPose(img, False)
lmList = detector.findPosition(img, False)
# print(lmList)
if len(lmList) != 0:
elbow = detector.findAngle(img, 11, 13, 15)
shoulder = detector.findAngle(img, 13, 11, 23)
hip = detector.findAngle(img, 11, 23,25)
#Percentage of success of pushup
per = np.interp(elbow, (90, 160), (0, 100))
#Bar to show Pushup progress
bar = np.interp(elbow, (90, 160), (380, 50))
#Check to ensure right form before starting the program
if elbow > 160 and shoulder > 40 and hip > 160:
form = 1
#Check for full range of motion for the pushup
if form == 1:
if per == 0:
if elbow <= 90 and hip > 160:
feedback = "Up"
if direction == 0:
count += 0.5
direction = 1
else:
feedback = "Fix Form"
if per == 100:
if elbow > 160 and shoulder > 40 and hip > 160:
feedback = "Down"
if direction == 1:
count += 0.5
direction = 0
else:
feedback = "Fix Form"
# form = 0
print(count)
#Draw Bar
if form == 1:
cv2.rectangle(img, (580, 50), (600, 380), (0, 255, 0), 3)
cv2.rectangle(img, (580, int(bar)), (600, 380), (0, 255, 0), cv2.FILLED)
cv2.putText(img, f'{int(per)}%', (565, 430), cv2.FONT_HERSHEY_PLAIN, 2,
(255, 0, 0), 2)
#Pushup counter
cv2.rectangle(img, (0, 380), (100, 480), (0, 255, 0), cv2.FILLED)
cv2.putText(img, str(int(count)), (25, 455), cv2.FONT_HERSHEY_PLAIN, 5,
(255, 0, 0), 5)
#Feedback
cv2.rectangle(img, (500, 0), (640, 40), (255, 255, 255), cv2.FILLED)
cv2.putText(img, feedback, (500, 40 ), cv2.FONT_HERSHEY_PLAIN, 2,
(0, 255, 0), 2)
cv2.imshow('Pushup counter', img)
if cv2.waitKey(10) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()

Code results : 

There is one thing to pay attention to in 17-21 That's ok . Determines the resolution of the image captured from the camera , And adjust the pixel value when drawing the rectangle of push up count , wait .( The first 68-82 That's ok ).

ending :

Okay, now we're done —— A push up counting software that can ensure the standard of action . Not fully bent down ? Don't count ! Knees on the ground ? Don't count !

Finally, the complete code has been packaged , Small partners in need , You can click on this line of font , Or private letter Xiaobian !

Tips: proper fitness is safer !


  1. 上一篇文章:
  2. 下一篇文章:
Copyright © 程式師世界 All Rights Reserved