Detailed explanation of this article pandas Missing values in (Missing data handling) Handle common operations .
Missing value processing is often used in data analysis and data cleaning ;
Pandas Define the following types as missing values :
NaN: ‘’, ‘#N/A’, ‘#N/A N/A’, ‘#NA’, ‘-1.#IND’, ‘-1.#QNAN’,
‘-NaN’, ‘-nan’, ‘1.#IND’, ‘1.#QNAN’, ‘<NA>’, ‘N/A’, ‘NA’,
‘NULL’, ‘NaN’, ‘n/a’, ‘nan’, ‘null’,None
Two in the following figure NaN It's not equal :
In [224]: df1.iloc[3:,0].values# Take out 'one' In column NaN
Out[224]: array([nan])
In [225]: df1.iloc[2:3,1].values# Take out 'two' In column NaN
Out[225]: array([nan])
In [226]: df1.iloc[3:,0].values == df1.iloc[2:3,1].values# Two NaN Value inequality
Out[226]: array([False])
NaN: ‘’, ‘#N/A’, ‘#N/A N/A’, ‘#NA’, ‘-1.#IND’, ‘-1.#QNAN’,‘-NaN’, ‘-nan’, ‘1.#IND’, ‘1.#QNAN’, ‘<NA>’, ‘N/A’, ‘NA’,‘NULL’, ‘NaN’, ‘n/a’, ‘nan’, ‘null’,None
# Define an experiment DataFrame
In [47]: d = {'one': pd.Series([1., 2., 3.], index=['a', 'b', 'c']),'two': pd.Series([1., 2., 3., 4.], index=['a', 'b', 'c', 'd'])}
In [48]: df = pd.DataFrame(d)
In [49]: df
Out[49]:
one two
a 1.0 1.0
b 2.0 2.0
c 3.0 3.0
d NaN 4.0
In [120]: df.isna()# Return the same shape bool Value padding DataFrame
Out[120]:
one two
a False False
b False False
c False False
d True False
In [67]: df
Out[67]:
one two
a 1.0 1.0
b 2.0 2.0
c 3.0 3.0
d NaN 4.0
In [68]: df.dropna()# Default axis=0
Out[68]:
one two
a 1.0 1.0
b 2.0 2.0
c 3.0 3.0
In [72]: df.dropna(axis=1)
Out[72]:
two
a 1.0
b 2.0
c 3.0
d 4.0
In [97]: df['three']=np.nan# Add a new column, all of which are NaN
In [98]: df
Out[98]:
one two three
a 1.0 1.0 NaN
b 2.0 2.0 NaN
c 3.0 3.0 NaN
d NaN 4.0 NaN
In [99]: df.dropna(how='any')
Out[99]:
Empty DataFrame# All deleted
Columns: [one, two, three]
Index: []
In [101]: df.dropna(axis=0,how='all')
Out[101]:
one two three
a 1.0 1.0 NaN
b 2.0 2.0 NaN
c 3.0 3.0 NaN
d NaN 4.0 NaN
In [102]: df.dropna(axis=1,how='all')
Out[102]:
one two
a 1.0 1.0
b 2.0 2.0
c 3.0 3.0
d NaN 4.0
In [103]: df.fillna(666)# Use 666 fill
Out[103]:
one two three
a 1.0 1.0 666.0
b 2.0 2.0 666.0
c 3.0 3.0 666.0
d 666.0 4.0 666.0
# The latter column is filled with fillna(axis=1,method=bfill')
In [109]: df.fillna(axis=1,method='ffill')
Out[109]:
one two three
a 1.0 1.0 1.0
b 2.0 2.0 2.0
c 3.0 3.0 3.0
d NaN 4.0 4.0
# The next line is filled with fillna(axis=1,method=bfill')
In [110]: df.fillna(method='ffill')
Out[110]:
one two three
a 1.0 1.0 NaN
b 2.0 2.0 NaN
c 3.0 3.0 NaN
d 3.0 4.0 NaN
In [112]: df.fillna({'one':666})# fill one Column NaN value
Out[112]:
one two three
a 1.0 1.0 NaN
b 2.0 2.0 NaN
c 3.0 3.0 NaN
d 666.0 4.0 NaN
In [113]: df.fillna({'three':666})
Out[113]:
one two three
a 1.0 1.0 666.0
b 2.0 2.0 666.0
c 3.0 3.0 666.0
d NaN 4.0 666.0
https://pandas.pydata.org/pandas-docs/stable/reference/frame.html?highlight=missing
-END-
Past highlights
It is suitable for beginners to download the route and materials of artificial intelligence ( Image & Text + video ) Introduction to machine learning series download Chinese University Courses 《 machine learning 》( Huang haiguang keynote speaker ) Print materials such as machine learning and in-depth learning notes 《 Statistical learning method 》 Code reproduction album machine learning communication qq Group 955171419, Please scan the code to join wechat group
Telnet cant be implemented, th