HashMap簡介
HashMap是基於哈希表實現的,每一個元素是一個key-value對,其內部通過單鏈表解決沖突問題,容量不足(超過了閥值)時,同樣會自動增長。
HashMap是非線程安全的,只是用於單線程環境下,多線程環境下可以采用concurrent並發包下的concurrentHashMap。
HashMap 實現了Serializable接口,因此它支持序列化,實現了Cloneable接口,能被克隆。
HashMap源碼剖析
HashMap的源碼如下(加入了比較詳細的注釋):
package java.util; import java.io.*; public class HashMap<K,V> extends AbstractMap<K,V> implements Map<K,V>, Cloneable, Serializable { // 默認的初始容量(容量為HashMap中槽的數目)是16,且實際容量必須是2的整數次冪。 static final int DEFAULT_INITIAL_CAPACITY = 16; // 最大容量(必須是2的冪且小於2的30次方,傳入容量過大將被這個值替換) static final int MAXIMUM_CAPACITY = 1 << 30; // 默認加載因子為0.75 static final float DEFAULT_LOAD_FACTOR = 0.75f; // 存儲數據的Entry數組,長度是2的冪。 // HashMap采用鏈表法解決沖突,每一個Entry本質上是一個單向鏈表 transient Entry[] table; // HashMap的底層數組中已用槽的數量 transient int size; // HashMap的阈值,用於判斷是否需要調整HashMap的容量(threshold = 容量*加載因子) int threshold; // 加載因子實際大小 final float loadFactor; // HashMap被改變的次數 transient volatile int modCount; // 指定“容量大小”和“加載因子”的構造函數 public HashMap(int initialCapacity, float loadFactor) { if (initialCapacity < 0) throw new IllegalArgumentException("Illegal initial capacity: " + initialCapacity); // HashMap的最大容量只能是MAXIMUM_CAPACITY if (initialCapacity > MAXIMUM_CAPACITY) initialCapacity = MAXIMUM_CAPACITY; //加載因此不能小於0 if (loadFactor <= 0 || Float.isNaN(loadFactor)) throw new IllegalArgumentException("Illegal load factor: " + loadFactor); // 找出“大於initialCapacity”的最小的2的冪 int capacity = 1; while (capacity < initialCapacity) capacity <<= 1; // 設置“加載因子” this.loadFactor = loadFactor; // 設置“HashMap阈值”,當HashMap中存儲數據的數量達到threshold時,就需要將HashMap的容量加倍。 threshold = (int)(capacity * loadFactor); // 創建Entry數組,用來保存數據 table = new Entry[capacity]; init(); } // 指定“容量大小”的構造函數 public HashMap(int initialCapacity) { this(initialCapacity, DEFAULT_LOAD_FACTOR); } // 默認構造函數。 public HashMap() { // 設置“加載因子”為默認加載因子0.75 this.loadFactor = DEFAULT_LOAD_FACTOR; // 設置“HashMap阈值”,當HashMap中存儲數據的數量達到threshold時,就需要將HashMap的容量加倍。 threshold = (int)(DEFAULT_INITIAL_CAPACITY * DEFAULT_LOAD_FACTOR); // 創建Entry數組,用來保存數據 table = new Entry[DEFAULT_INITIAL_CAPACITY]; init(); } // 包含“子Map”的構造函數 public HashMap(Map<? extends K, ? extends V> m) { this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1, DEFAULT_INITIAL_CAPACITY), DEFAULT_LOAD_FACTOR); // 將m中的全部元素逐個添加到HashMap中 putAllForCreate(m); } //求hash值的方法,重新計算hash值 static int hash(int h) { h ^= (h >>> 20) ^ (h >>> 12); return h ^ (h >>> 7) ^ (h >>> 4); } // 返回h在數組中的索引值,這裡用&代替取模,旨在提升效率 // h & (length-1)保證返回值的小於length static int indexFor(int h, int length) { return h & (length-1); } public int size() { return size; } public boolean isEmpty() { return size == 0; } // 獲取key對應的value public V get(Object key) { if (key == null) return getForNullKey(); // 獲取key的hash值 int hash = hash(key.hashCode()); // 在“該hash值對應的鏈表”上查找“鍵值等於key”的元素 for (Entry<K,V> e = table[indexFor(hash, table.length)]; e != null; e = e.next) { Object k; //判斷key是否相同 if (e.hash == hash && ((k = e.key) == key || key.equals(k))) return e.value; } //沒找到則返回null return null; } // 獲取“key為null”的元素的值 // HashMap將“key為null”的元素存儲在table[0]位置,但不一定是該鏈表的第一個位置! private V getForNullKey() { for (Entry<K,V> e = table[0]; e != null; e = e.next) { if (e.key == null) return e.value; } return null; } // HashMap是否包含key public boolean containsKey(Object key) { return getEntry(key) != null; } // 返回“鍵為key”的鍵值對 final Entry<K,V> getEntry(Object key) { // 獲取哈希值 // HashMap將“key為null”的元素存儲在table[0]位置,“key不為null”的則調用hash()計算哈希值 int hash = (key == null) ? 0 : hash(key.hashCode()); // 在“該hash值對應的鏈表”上查找“鍵值等於key”的元素 for (Entry<K,V> e = table[indexFor(hash, table.length)]; e != null; e = e.next) { Object k; if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) return e; } return null; } // 將“key-value”添加到HashMap中 public V put(K key, V value) { // 若“key為null”,則將該鍵值對添加到table[0]中。 if (key == null) return putForNullKey(value); // 若“key不為null”,則計算該key的哈希值,然後將其添加到該哈希值對應的鏈表中。 int hash = hash(key.hashCode()); int i = indexFor(hash, table.length); for (Entry<K,V> e = table[i]; e != null; e = e.next) { Object k; // 若“該key”對應的鍵值對已經存在,則用新的value取代舊的value。然後退出! if (e.hash == hash && ((k = e.key) == key || key.equals(k))) { V oldValue = e.value; e.value = value; e.recordAccess(this); return oldValue; } } // 若“該key”對應的鍵值對不存在,則將“key-value”添加到table中 modCount++; //將key-value添加到table[i]處 addEntry(hash, key, value, i); return null; } // putForNullKey()的作用是將“key為null”鍵值對添加到table[0]位置 private V putForNullKey(V value) { for (Entry<K,V> e = table[0]; e != null; e = e.next) { if (e.key == null) { V oldValue = e.value; e.value = value; e.recordAccess(this); return oldValue; } } // 如果沒有存在key為null的鍵值對,則直接題阿見到table[0]處! modCount++; addEntry(0, null, value, 0); return null; } // 創建HashMap對應的“添加方法”, // 它和put()不同。putForCreate()是內部方法,它被構造函數等調用,用來創建HashMap // 而put()是對外提供的往HashMap中添加元素的方法。 private void putForCreate(K key, V value) { int hash = (key == null) ? 0 : hash(key.hashCode()); int i = indexFor(hash, table.length); // 若該HashMap表中存在“鍵值等於key”的元素,則替換該元素的value值 for (Entry<K,V> e = table[i]; e != null; e = e.next) { Object k; if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) { e.value = value; return; } } // 若該HashMap表中不存在“鍵值等於key”的元素,則將該key-value添加到HashMap中 createEntry(hash, key, value, i); } // 將“m”中的全部元素都添加到HashMap中。 //本欄目
1、首先要清楚HashMap的存儲結構,如下圖所示:
圖中,紫色部分即代表哈希表,也稱為哈希數組,數組的每個元素都是一個單鏈表的頭節點,鏈表是用來解決沖突的,如果不同的key映射到了數組的同一位置處,就將其放入單鏈表中。
2、首先看鏈表中節點的數據結構:
// Entry是單向鏈表。 // 它是 “HashMap鏈式存儲法”對應的鏈表。 // 它實現了Map.Entry 接口,即實現getKey(), getValue(), setValue(V value), equals(Object o), hashCode()這些函數 static class Entry<K,V> implements Map.Entry<K,V> { final K key; V value; // 指向下一個節點 Entry<K,V> next; final int hash; // 構造函數。 // 輸入參數包括"哈希值(h)", "鍵(k)", "值(v)", "下一節點(n)" Entry(int h, K k, V v, Entry<K,V> n) { value = v; next = n; key = k; hash = h; } public final K getKey() { return key; } public final V getValue() { return value; } public final V setValue(V newValue) { V oldValue = value; value = newValue; return oldValue; } // 判斷兩個Entry是否相等 // 若兩個Entry的“key”和“value”都相等,則返回true。 // 否則,返回false public final boolean equals(Object o) { if (!(o instanceof Map.Entry)) return false; Map.Entry e = (Map.Entry)o; Object k1 = getKey(); Object k2 = e.getKey(); if (k1 == k2 || (k1 != null && k1.equals(k2))) { Object v1 = getValue(); Object v2 = e.getValue(); if (v1 == v2 || (v1 != null && v1.equals(v2))) return true; } return false; } // 實現hashCode() public final int hashCode() { return (key==null ? 0 : key.hashCode()) ^ (value==null ? 0 : value.hashCode()); } public final String toString() { return getKey() + "=" + getValue(); } // 當向HashMap中添加元素時,繪調用recordAccess()。 // 這裡不做任何處理 void recordAccess(HashMap<K,V> m) { } // 當從HashMap中刪除元素時,繪調用recordRemoval()。 // 這裡不做任何處理 void recordRemoval(HashMap<K,V> m) { } }它的結構元素除了key、value、hash外,還有next,next指向下一個節點。另外,這裡覆寫了equals和hashCode方法來保證鍵值對的獨一無二。
3、HashMap共有四個構造方法。構造方法中提到了兩個很重要的參數:初始容量和加載因子。這兩個參數是影響HashMap性能的重要參數,其中容量表示哈希表中槽的數量(即哈希數組的長度),初始容量是創建哈希表時的容量(從構造函數中可以看出,如果不指明,則默認為16),加載因子是哈希表在其容量自動增加之前可以達到多滿的一種尺度,當哈希表中的條目數超出了加載因子與當前容量的乘積時,則要對該哈希表進行 resize 操作(即擴容)。
下面說下加載因子,如果加載因子越大,對空間的利用更充分,但是查找效率會降低(鏈表長度會越來越長);如果加載因子太小,那麼表中的數據將過於稀疏(很多空間還沒用,就開始擴容了),對空間造成嚴重浪費。如果我們在構造方法中不指定,則系統默認加載因子為0.75,這是一個比較理想的值,一般情況下我們是無需修改的。
另外,無論我們指定的容量為多少,構造方法都會將實際容量設為不小於指定容量的2的次方的一個數,且最大值不能超過2的30次方
4、HashMap中key和value都允許為null。
5、要重點分析下HashMap中用的最多的兩個方法put和get。先從比較簡單的get方法著手,源碼如下:
// 獲取key對應的value public V get(Object key) { if (key == null) return getForNullKey(); // 獲取key的hash值 int hash = hash(key.hashCode()); // 在“該hash值對應的鏈表”上查找“鍵值等於key”的元素 for (Entry<K,V> e = table[indexFor(hash, table.length)]; e != null; e = e.next) { Object k; /判斷key是否相同 if (e.hash == hash && ((k = e.key) == key || key.equals(k))) return e.value; } 沒找到則返回null return null; } // 獲取“key為null”的元素的值 // HashMap將“key為null”的元素存儲在table[0]位置,但不一定是該鏈表的第一個位置! private V getForNullKey() { for (Entry<K,V> e = table[0]; e != null; e = e.next) { if (e.key == null) return e.value; } return null; }首先,如果key為null,則直接從哈希表的第一個位置table[0]對應的鏈表上查找。記住,key為null的鍵值對永遠都放在以table[0]為頭結點的鏈表中,當然不一定是存放在頭結點table[0]中。
如果key不為null,則先求的key的hash值,根據hash值找到在table中的索引,在該索引對應的單鏈表中查找是否有鍵值對的key與目標key相等,有就返回對應的value,沒有則返回null。
put方法稍微復雜些,代碼如下:
// 將“key-value”添加到HashMap中 public V put(K key, V value) { // 若“key為null”,則將該鍵值對添加到table[0]中。 if (key == null) return putForNullKey(value); // 若“key不為null”,則計算該key的哈希值,然後將其添加到該哈希值對應的鏈表中。 int hash = hash(key.hashCode()); int i = indexFor(hash, table.length); for (Entry<K,V> e = table[i]; e != null; e = e.next) { Object k; // 若“該key”對應的鍵值對已經存在,則用新的value取代舊的value。然後退出! if (e.hash == hash && ((k = e.key) == key || key.equals(k))) { V oldValue = e.value; e.value = value; e.recordAccess(this); return oldValue; } } // 若“該key”對應的鍵值對不存在,則將“key-value”添加到table中 modCount++; //將key-value添加到table[i]處 addEntry(hash, key, value, i); return null; }如果key為null,則將其添加到table[0]對應的鏈表中,putForNullKey的源碼如下:
// putForNullKey()的作用是將“key為null”鍵值對添加到table[0]位置 private V putForNullKey(V value) { for (Entry<K,V> e = table[0]; e != null; e = e.next) { if (e.key == null) { V oldValue = e.value; e.value = value; e.recordAccess(this); return oldValue; } } // 如果沒有存在key為null的鍵值對,則直接題阿見到table[0]處! modCount++; addEntry(0, null, value, 0); return null; }如果key不為null,則同樣先求出key的hash值,根據hash值得出在table中的索引,而後遍歷對應的單鏈表,如果單鏈表中存在與目標key相等的鍵值對,則將新的value覆蓋舊的value,比將舊的value返回,如果找不到與目標key相等的鍵值對,或者該單鏈表為空,則將該鍵值對插入到改單鏈表的頭結點位置(每次新插入的節點都是放在頭結點的位置),該操作是有addEntry方法實現的,它的源碼如下:
// 新增Entry。將“key-value”插入指定位置,bucketIndex是位置索引。 void addEntry(int hash, K key, V value, int bucketIndex) { // 保存“bucketIndex”位置的值到“e”中 Entry<K,V> e = table[bucketIndex]; // 設置“bucketIndex”位置的元素為“新Entry”, // 設置“e”為“新Entry的下一個節點” table[bucketIndex] = new Entry<K,V>(hash, key, value, e); // 若HashMap的實際大小 不小於 “阈值”,則調整HashMap的大小 if (size++ >= threshold) resize(2 * table.length); }注意這裡倒數第三行的構造方法,將key-value鍵值對賦給table[bucketIndex],並將其next指向元素e,這便將key-value放到了頭結點中,並將之前的頭結點接在了它的後面。該方法也說明,每次put鍵值對的時候,總是將新的該鍵值對放在table[bucketIndex]處(即頭結點處)。
兩外注意最後兩行代碼,每次加入鍵值對時,都要判斷當前已用的槽的數目是否大於等於閥值(容量*加載因子),如果大於等於,則進行擴容,將容量擴為原來容量的2倍。
6、關於擴容。上面我們看到了擴容的方法,resize方法,它的源碼如下:
// 重新調整HashMap的大小,newCapacity是調整後的單位 void resize(int newCapacity) { Entry[] oldTable = table; int oldCapacity = oldTable.length; if (oldCapacity == MAXIMUM_CAPACITY) { threshold = Integer.MAX_VALUE; return; } // 新建一個HashMap,將“舊HashMap”的全部元素添加到“新HashMap”中, // 然後,將“新HashMap”賦值給“舊HashMap”。 Entry[] newTable = new Entry[newCapacity]; transfer(newTable); table = newTable; threshold = (int)(newCapacity * loadFactor); }很明顯,是新建了一個HashMap的底層數組,而後調用transfer方法,將就HashMap的全部元素添加到新的HashMap中(要重新計算元素在新的數組中的索引位置)。transfer方法的源碼如下:
// 將HashMap中的全部元素都添加到newTable中 void transfer(Entry[] newTable) { Entry[] src = table; int newCapacity = newTable.length; for (int j = 0; j < src.length; j++) { Entry<K,V> e = src[j]; if (e != null) { src[j] = null; do { Entry<K,V> next = e.next; int i = indexFor(e.hash, newCapacity); e.next = newTable[i]; newTable[i] = e; e = next; } while (e != null); } } }本欄目
很明顯,擴容是一個相當耗時的操作,因為它需要重新計算這些元素在新的數組中的位置並進行復制處理。因此,我們在用HashMap的時,最好能提前預估下HashMap中元素的個數,這樣有助於提高HashMap的性能。
7、注意containsKey方法和containsValue方法。前者直接可以通過key的哈希值將搜索范圍定位到指定索引對應的鏈表,而後者要對哈希數組的每個鏈表進行搜索。
8、我們重點來分析下求hash值和索引值的方法,這兩個方法便是HashMap設計的最為核心的部分,二者結合能保證哈希表中的元素盡可能均勻地散列。
計算哈希值的方法如下:
static int hash(int h) { h ^= (h >>> 20) ^ (h >>> 12); return h ^ (h >>> 7) ^ (h >>> 4); }它只是一個數學公式,IDK這樣設計對hash值的計算,自然有它的好處,至於為什麼這樣設計,我們這裡不去追究,只要明白一點,用的位的操作使hash值的計算效率很高。
由hash值找到對應索引的方法如下:
static int indexFor(int h, int length) { return h & (length-1); }這個我們要重點說下,我們一般對哈希表的散列很自然地會想到用hash值對length取模(即除法散列法),Hashtable中也是這樣實現的,這種方法基本能保證元素在哈希表中散列的比較均勻,但取模會用到除法運算,效率很低,HashMap中則通過h&(length-1)的方法來代替取模,同樣實現了均勻的散列,但效率要高很多,這也是HashMap對Hashtable的一個改進。
接下來,我們分析下為什麼哈希表的容量一定要是2的整數次冪。首先,length為2的整數次冪的話,h&(length-1)就相當於對length取模,這樣便保證了散列的均勻,同時也提升了效率;其次,length為2的整數次冪的話,為偶數,這樣length-1為奇數,奇數的最後一位是1,這樣便保證了h&(length-1)的最後一位可能為0,也可能為1(這取決於h的值),即與後的結果可能為偶數,也可能為奇數,這樣便可以保證散列的均勻性,而如果length為奇數的話,很明顯length-1為偶數,它的最後一位是0,這樣h&(length-1)的最後一位肯定為0,即只能為偶數,這樣任何hash值都只會被散列到數組的偶數下標位置上,這便浪費了近一半的空間,因此,length取2的整數次冪,是為了使不同hash值發生碰撞的概率較小,這樣就能使元素在哈希表中均勻地散列。