volatile變量
在Java語言中,volatile變量提供了一種輕量級的同步機制,volatile變量用來確保將變量的更新操作通知到其它線程,volatile變量不會被緩存到寄存器或者對其它處理器不可見的地方,所以在讀取volatile變量時總會返回最新寫入的值,volatile變量通常用來表示某個狀態標識。
原子變量:
原子變量是“更強大的volatile”變量,從實現來看,每個原子變量類的value屬性都是一個volatile變量,所以volatile變量的特性原子變量也有。同時,原子變量提供讀、改、寫的原子操作,更強大,更符合一般並發場景的需求。
既然原子變量更強大,是否還有必要使用volatile變量?如果有什麼時候選擇volatile變量,什麼時候選擇原子變量?當然這種選擇只有在多線程並發的場景下才會出現,而多線程並發的目的一般是為了提高吞吐量和減少延遲響應,所以還是先看段測試代碼和運行結果吧!
import java.util.concurrent.CountDownLatch; import java.util.concurrent.atomic.AtomicInteger; public class TestVolatile { private static int CALC_TIME = 1000; private static final int THREAD_NUM = 100; private AtomicInteger ai; private int i; private volatile int vi; public TestVolatile(){ ai = new AtomicInteger(0); i = 0; vi = 0; } public static void main(String[] args) throws InterruptedException { System.out.println("Calculation Times:" + CALC_TIME + " ----------------------"); test(); CALC_TIME = 10000; System.out.println("Calculation Times:" + CALC_TIME + " ----------------------"); test(); CALC_TIME = 100000; System.out.println("Calculation Times:" + CALC_TIME + " ----------------------"); test(); CALC_TIME = 1000000; System.out.println("Calculation Times:" + CALC_TIME + " ----------------------"); test(); } private static void test() throws InterruptedException { testAi(); testI(); testVi(); } private static void testAi() throws InterruptedException { TestVolatile testVolatile = new TestVolatile(); CountDownLatch begSignal = new CountDownLatch(1); CountDownLatch endSignal = new CountDownLatch(THREAD_NUM); for (int i = 0; i < THREAD_NUM; i++) { new Thread( testVolatile.new WorkerAI(begSignal, endSignal) ).start(); } long startTime = System.currentTimeMillis(); begSignal.countDown(); endSignal.await(); long endTime = System.currentTimeMillis(); System.out.println("Total time consumed by atomic increment : " + (endTime-startTime)); } private static void testI() throws InterruptedException { TestVolatile testVolatile = new TestVolatile(); CountDownLatch begSignal = new CountDownLatch(1); CountDownLatch endSignal = new CountDownLatch(THREAD_NUM); for (int i = 0; i < THREAD_NUM; i++) { new Thread( testVolatile.new WorkerI(begSignal, endSignal) ).start(); } long startTime = System.currentTimeMillis(); begSignal.countDown(); endSignal.await(); long endTime = System.currentTimeMillis(); System.out.println("Total time consumed by synchronized increment : " + (endTime-startTime)); } private static void testVi() throws InterruptedException { TestVolatile testVolatile = new TestVolatile(); CountDownLatch begSignal = new CountDownLatch(1); CountDownLatch endSignal = new CountDownLatch(THREAD_NUM); for (int i = 0; i < THREAD_NUM; i++) { new Thread( testVolatile.new WorkerVI(begSignal, endSignal) ).start(); } long startTime = System.currentTimeMillis(); begSignal.countDown(); endSignal.await(); long endTime = System.currentTimeMillis(); System.out.println("Total time consumed by volatile increment : " + (endTime-startTime)); } public void incrAi() { ai.getAndIncrement(); } public synchronized void incrI() { i++; } /** * 這個函數不是線程安全,很可能得到錯誤的結果,這裡只是為了測試讀取volatile變量的效率 */ public void incrVi() { vi++; } class WorkerAI implements Runnable { private CountDownLatch beginSignal; private CountDownLatch endSignal; public WorkerAI(CountDownLatch begin, CountDownLatch end) { this.beginSignal = begin; this.endSignal = end; } @Override public void run() { try { beginSignal.await(); } catch (InterruptedException e) { e.printStackTrace(); } for(int j=0; j<CALC_TIME; j++){ incrAi(); } endSignal.countDown(); } } class WorkerI implements Runnable { private CountDownLatch beginSignal; private CountDownLatch endSignal; public WorkerI(CountDownLatch begin, CountDownLatch end) { this.beginSignal = begin; this.endSignal = end; } @Override public void run() { try { beginSignal.await(); } catch (InterruptedException e) { e.printStackTrace(); } for(int j=0; j<CALC_TIME; j++){ incrAi(); } endSignal.countDown(); } } class WorkerVI implements Runnable { private CountDownLatch beginSignal; private CountDownLatch endSignal; public WorkerVI(CountDownLatch begin, CountDownLatch end) { this.beginSignal = begin; this.endSignal = end; } @Override public void run() { try { beginSignal.await(); } catch (InterruptedException e) { e.printStackTrace(); } for(int j=0; j<CALC_TIME; j++){ incrVi(); } endSignal.countDown(); } } }
程序運行結果:
Calculation Times:1000 ---------------------- Total time consumed by atomic increment : 8 Total time consumed by synchronized increment : 6 Total time consumed by volatile increment : 5 Calculation Times:10000 ---------------------- Total time consumed by atomic increment : 23 Total time consumed by synchronized increment : 24 Total time consumed by volatile increment : 15 Calculation Times:100000 ---------------------- Total time consumed by atomic increment : 354 Total time consumed by synchronized increment : 360 Total time consumed by volatile increment : 148 Calculation Times:1000000 ---------------------- Total time consumed by atomic increment : 3579 Total time consumed by synchronized increment : 3608 Total time consumed by volatile increment : 1519
(懷疑自己的程序寫得有問題,但暫時找不到問題,請大家幫忙拍磚!)
從測試結果看,原子變量的效率與synchronized同步操作效率差不多,感覺不到優勢,volatile變量提升一倍的性能(當然++操作是有同步問題),所以如果volatile變量能滿足需求優先使用volatile變量,原子變量次之。那什麼時候適合使用volatile變量?專家推薦最佳實踐是同時滿足以下三個條件:
對變量的寫入操作不依賴變量的當前值,或者能確保只有單個線程更新變量的值
改變量不會與其他狀態變量一起組成不變性的條件
在訪問變量時不需要加鎖
個人實踐總結:
滿足條件的情況下使用volatile布爾變量,其他數據類型使用原子變量。
出處:http://stevex.blog.51cto.com/4300375/1285964