給定一個數組,求出數組中連續的一些元素使其和的值最大。如果所有元素都為正數,顯然整個數組即為所求的。如果所有元素的值為負數,則所求的最大值為0.
這是在編程珠玑上看到的,其時間復雜度由O(n3)減為O(n)了。
java代碼
package cn.lifx.test;
public class MaxSum
{
public static void main(String[] args)
{
int[] arr = new int[]{31, -41, 59, 26, -53, 58, 97, -93, -23, 84};
MaxSum ms = new MaxSum();
ms.Max(arr);
ms.Max2(arr);
ms.Max3(arr);
int max = ms.Max4(arr, 0, arr.length-1);
System.out.println("Max sum is " + max);
ms.Max5(arr);
}
//方法1: 時間復雜度為O(n*n*n)
public void Max(int[] arr)
{
int max = 0;
int sum = 0;
int left = -1;
int right = -1;
for(int i=0; i<arr.length; i++)
{
for(int j=i; j<arr.length; j++)
{
sum = 0;
for(int k=i; k<=j; k++)
{
sum = sum + arr[k];
}
if(sum > max)
{
left = i;
right = j;
max = sum;
}
}
}
if(right > 0)
{
System.out.println("Max is from element " + left + "(" + arr[left] + ") to element " + right + "(" + arr[right] + "), max sum is " + max);
}
else
{
System.out.println("Max sum is 0 .");
}
}
//方法2:時間復雜度為O(n*n)
public void Max2(int[] arr)
{
int max = 0;
int sum = 0;
int left = -1;
int right = -1;
for(int i=0; i<arr.length; i++)
{
sum = 0;
for(int j=i; j<arr.length; j++)
{
sum = sum + arr[j];
if(sum > max)
{
left = i;
right = j;
max = sum;
}
}
}
if(right > 0)
{
System.out.println("Max is from element " + left + "(" + arr[left] + ") to element " + right + "(" + arr[right] + "), max sum is " + max);
}
else
{
System.out.println("Max sum is 0 .");
}
}
//方法3:時間復雜度為O(n*n)
public void Max3(int[] arr)
{
int max = 0;
int sum = 0;
int left = -1;
int right = -1;
int[] temp = new int[arr.length+1];
temp[0] = 0;
for(int i=0; i<arr.length; i++)
{
temp[i+1] = temp[i] + arr[i];
}
for(int i=0; i<arr.length; i++)
{
for(int j=i; j<temp.length; j++)
{
sum = temp[j] - temp[i];
if(sum > max)
{
left = i;
right = j-1;
max = sum;
}
}
}
if(right > 0)
{
System.out.println("Max is from element " + left + "(" + arr[left] + ") to element " + right + "(" + arr[right] + "), max sum is " + max);
}
else
{
System.out.println("Max sum is 0 .");
}
}
//方法4:時間復雜度為O(n*logn)
public int Max4(int[] arr, int left, int right)
{
int sum = 0;
int max = 0;
int max1 = 0;
int max2 = 0;
int middle = 0;
if(left > right)
{
return 0;
}
else if(left == right)
{
return (arr[left] > 0 ? arr[left] : 0);
}
middle = (left + right)/2;
for(int i=middle; i>=left; i--)
{
sum = sum + arr[i];
if(sum > max1)
{
max1 = sum;
}
}
sum=0;
for(int i=middle+1; i<=right; i++)
{
sum = sum + arr[i];
if(sum > max2)
{
max2 = sum;
}
}
max = max1+max2;
int temp1 = Max4(arr, left, middle);
int temp2 = Max4(arr, middle+1, right);
if(temp1 > max)
{
max = temp1;
}
if(temp2 > max)
{
max = temp2;
}
return max;
}
//方法5:時間復雜度為O(n)
public void Max5(int[] arr)
{
int max1 = 0;
int max2 = 0;
int left = -1;
int right = -1;
int temp = 0;
for(int i=0; i<arr.length; i++)
{
temp = (max1+arr[i]);
if(temp > 0)
{
max1 = temp;
}
else
{
left = i+1;
max1 = 0;
}
if(max1 > max2)
{
right = i;
max2 = max1;
}
}
if(right > 0)
{
System.out.println("Max is from element " + left + "(" + arr[left] + ") to element " + right + "(" + arr[right] + "), max sum is " + max2);
}
else
{
System.out.println("Max sum is 0 .");
}
}
}
輸出為:
Java代碼
Max is from element 2(59) to element 6(97), max sum is 187
Max is from element 2(59) to element 6(97), max sum is 187
Max is from element 2(59) to element 6(97), max sum is 187
Max sum is 187
Max is from element 2(59) to element 6(97), max sum is 187