基於Java回想之多線程同步的應用詳解。本站提示廣大學習愛好者:(基於Java回想之多線程同步的應用詳解)文章只能為提供參考,不一定能成為您想要的結果。以下是基於Java回想之多線程同步的應用詳解正文
起首論述甚麼是同步,分歧步有甚麼成績,然後評論辯論可以采用哪些辦法掌握同步,接上去我們會模仿回想收集通訊時那樣,構建一個辦事器真個“線程池”,JDK為我們供給了一個很年夜的concurrent對象包,最初我們會對外面的內容停止摸索。
為何要線程同步?
說到線程同步,年夜部門情形下, 我們是在針對“單對象多線程”的情形停止評論辯論,普通會將其分紅兩部門,一部門是關於“同享變量”,一部門關於“履行步調”。
同享變量
當我們在線程對象(Runnable)中界說了全局變量,run辦法會修正該變量時,假如有多個線程同時應用該線程對象,那末就會形成全局變量的值被同時修正,形成毛病。我們來看上面的代碼:
同享變量形成同步成績
class MyRunner implements Runnable
{
public int sum = 0;
public void run()
{
System.out.println(Thread.currentThread().getName() + " Start.");
for (int i = 1; i <= 100; i++)
{
sum += i;
}
try {
Thread.sleep(500);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread().getName() + " --- The value of sum is " + sum);
System.out.println(Thread.currentThread().getName() + " End.");
}
}
private static void sharedVaribleTest() throws InterruptedException
{
MyRunner runner = new MyRunner();
Thread thread1 = new Thread(runner);
Thread thread2 = new Thread(runner);
thread1.setDaemon(true);
thread2.setDaemon(true);
thread1.start();
thread2.start();
thread1.join();
thread2.join();
}
這個示例中,線程用來盤算1到100的和是若干,我們曉得准確成果是5050(似乎是高斯小時刻玩過這個?),然則上述法式前往的成果是10100,緣由是兩個線程同時對sum停止操作。
履行步調
我們在多個線程運轉時,能夠須要某些操作合在一路作為“原子操作”,即在這些操作可以看作是“單線程”的,例如我們能夠願望輸入成果的模樣是如許的:
線程1:步調1
線程1:步調2
線程1:步調3
線程2:步調1
線程2:步調2
線程2:步調3
假如同步掌握欠好,出來的模樣能夠是如許的:
線程1:步調1
線程2:步調1
線程1:步調2
線程2:步調2
線程1:步調3
線程2:步調3
這裡我們也給出一個示例代碼:
履行步調凌亂帶來的同步成績
class MyNonSyncRunner implements Runnable
{
public void run() {
System.out.println(Thread.currentThread().getName() + " Start.");
for(int i = 1; i <= 5; i++)
{
System.out.println(Thread.currentThread().getName() + " Running step " + i);
try
{
Thread.sleep(50);
}
catch(InterruptedException ex)
{
ex.printStackTrace();
}
}
System.out.println(Thread.currentThread().getName() + " End.");
}
}
private static void syncTest() throws InterruptedException
{
MyNonSyncRunner runner = new MyNonSyncRunner();
Thread thread1 = new Thread(runner);
Thread thread2 = new Thread(runner);
thread1.setDaemon(true);
thread2.setDaemon(true);
thread1.start();
thread2.start();
thread1.join();
thread2.join();
}
若何掌握線程同步
既然線程同步有上述成績,那末我們應當若何去處理呢?針對分歧緣由形成的同步成績,我們可以采用分歧的戰略。
掌握同享變量
我們可以采用3種方法來掌握同享變量。
將“單對象多線程”修正成“多對象多線程”
上文說起,同步成績普通產生在“單對象多線程”的場景中,那末最簡略的處置方法就是將運轉模子修正成“多對象多線程”的模樣,針對下面示例中的同步成績,修正後的代碼以下:
處理同享變量成績計劃一
private static void sharedVaribleTest2() throws InterruptedException
{
Thread thread1 = new Thread(new MyRunner());
Thread thread2 = new Thread(new MyRunner());
thread1.setDaemon(true);
thread2.setDaemon(true);
thread1.start();
thread2.start();
thread1.join();
thread2.join();
}
我們可以看到,上述代碼中兩個線程應用了兩個分歧的Runnable實例,它們在運轉進程中,就不會去拜訪統一個全局變量。
將“全局變量”升級為“部分變量”
既然是同享變量形成的成績,那末我們可以將同享變量改成“不同享”,行將其修正為部分變量。如許也能夠處理成績,異樣針對下面的示例,這類處理方法的代碼以下:
處理同享變量成績計劃二
class MyRunner2 implements Runnable
{
public void run()
{
System.out.println(Thread.currentThread().getName() + " Start.");
int sum = 0;
for (int i = 1; i <= 100; i++)
{
sum += i;
}
try {
Thread.sleep(500);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread().getName() + " --- The value of sum is " + sum);
System.out.println(Thread.currentThread().getName() + " End.");
}
}
private static void sharedVaribleTest3() throws InterruptedException
{
MyRunner2 runner = new MyRunner2();
Thread thread1 = new Thread(runner);
Thread thread2 = new Thread(runner);
thread1.setDaemon(true);
thread2.setDaemon(true);
thread1.start();
thread2.start();
thread1.join();
thread2.join();
}
我們可以看出,sum變量曾經由全局變質變為run辦法外部的部分變量了。
應用ThreadLocal機制
ThreadLocal是JDK引入的一種機制,它用於處理線程間同享變量,應用ThreadLocal聲明的變量,即便在線程中屬於全局變量,針對每一個線程來說,這個變量也是自力的。
我們可以用這類方法來改革下面的代碼,以下所示:
處理同享變量成績計劃三
class MyRunner3 implements Runnable
{
public ThreadLocal<Integer> tl = new ThreadLocal<Integer>();
public void run()
{
System.out.println(Thread.currentThread().getName() + " Start.");
for (int i = 0; i <= 100; i++)
{
if (tl.get() == null)
{
tl.set(new Integer(0));
}
int sum = ((Integer)tl.get()).intValue();
sum+= i;
tl.set(new Integer(sum));
try {
Thread.sleep(10);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
System.out.println(Thread.currentThread().getName() + " --- The value of sum is " + ((Integer)tl.get()).intValue());
System.out.println(Thread.currentThread().getName() + " End.");
}
}
private static void sharedVaribleTest4() throws InterruptedException
{
MyRunner3 runner = new MyRunner3();
Thread thread1 = new Thread(runner);
Thread thread2 = new Thread(runner);
thread1.setDaemon(true);
thread2.setDaemon(true);
thread1.start();
thread2.start();
thread1.join();
thread2.join();
}
綜上三種計劃,第一種計劃會下降多線程履行的效力,是以,我們推舉應用第二種或許第三種計劃。
掌握履行步調
說到履行步調,我們可使用synchronized症結字來處理它。
履行步調成績處理計劃
class MySyncRunner implements Runnable
{
public void run() {
synchronized(this)
{
System.out.println(Thread.currentThread().getName() + " Start.");
for(int i = 1; i <= 5; i++)
{
System.out.println(Thread.currentThread().getName() + " Running step " + i);
try
{
Thread.sleep(50);
}
catch(InterruptedException ex)
{
ex.printStackTrace();
}
}
System.out.println(Thread.currentThread().getName() + " End.");
}
}
}
private static void syncTest2() throws InterruptedException
{
MySyncRunner runner = new MySyncRunner();
Thread thread1 = new Thread(runner);
Thread thread2 = new Thread(runner);
thread1.setDaemon(true);
thread2.setDaemon(true);
thread1.start();
thread2.start();
thread1.join();
thread2.join();
}
在線程同步的話題上,synchronized是一個異常主要的症結字。它的道理和數據庫中事務鎖的道理相似。我們在應用進程中,應當盡可能縮減synchronized籠罩的規模,緣由有二:1)被它籠罩的規模是串行的,效力低;2)輕易發生逝世鎖。我們來看上面的示例:
synchronized示例
private static void syncTest3() throws InterruptedException
{
final List<Integer> list = new ArrayList<Integer>();
Thread thread1 = new Thread()
{
public void run()
{
System.out.println(Thread.currentThread().getName() + " Start.");
Random r = new Random(100);
synchronized(list)
{
for (int i = 0; i < 5; i++)
{
list.add(new Integer(r.nextInt()));
}
System.out.println("The size of list is " + list.size());
}
try
{
Thread.sleep(500);
}
catch(InterruptedException ex)
{
ex.printStackTrace();
}
System.out.println(Thread.currentThread().getName() + " End.");
}
};
Thread thread2 = new Thread()
{
public void run()
{
System.out.println(Thread.currentThread().getName() + " Start.");
Random r = new Random(100);
synchronized(list)
{
for (int i = 0; i < 5; i++)
{
list.add(new Integer(r.nextInt()));
}
System.out.println("The size of list is " + list.size());
}
try
{
Thread.sleep(500);
}
catch(InterruptedException ex)
{
ex.printStackTrace();
}
System.out.println(Thread.currentThread().getName() + " End.");
}
};
thread1.start();
thread2.start();
thread1.join();
thread2.join();
}
我們應當把須要同步的內容集中在一路,盡可能不包括其他不相干的、消費年夜量資本的操作,示例中線程休眠的操作明顯不該該包含在外面。
結構線程池
我們在<基於Java回想之收集通訊的運用剖析>中,曾經構建了一個Socket銜接池,這裡我們在此基本上,構建一個線程池,完成根本的啟動、休眠、叫醒、停滯操作。
根本思緒照樣以數組的情勢堅持一系列線程,經由過程Socket通訊,客戶端向辦事器端發送死令,當辦事器端吸收到敕令後,依據收到的敕令對線程數組中的線程停止操作。
Socket客戶真個代碼堅持不變,仍然采取構建Socket銜接池時的代碼,我們重要針對辦事器端停止改革。
起首,我們須要界說一個線程對象,它用來履行我們的營業操作,這裡簡化起見,只讓線程停止休眠。
界說線程對象
enum ThreadStatus
{
Initial,
Running,
Sleeping,
Stopped
}
enum ThreadTask
{
Start,
Stop,
Sleep,
Wakeup
}
class MyThread extends Thread
{
public ThreadStatus status = ThreadStatus.Initial;
public ThreadTask task;
public void run()
{
status = ThreadStatus.Running;
while(true)
{
try {
Thread.sleep(3000);
if (status == ThreadStatus.Sleeping)
{
System.out.println(Thread.currentThread().getName() + " 進入休眠狀況。");
this.wait();
}
} catch (InterruptedException e) {
System.out.println(Thread.currentThread().getName() + " 運轉進程中湧現毛病。");
status = ThreadStatus.Stopped;
}
}
}
}
然後,我們須要界說一個線程治理器,它用來對線程池中的線程停止治理,代碼以下:
界說線程池治理對象
class MyThreadManager
{
public static void manageThread(MyThread[] threads, ThreadTask task)
{
for (int i = 0; i < threads.length; i++)
{
synchronized(threads[i])
{
manageThread(threads[i], task);
}
}
System.out.println(getThreadStatus(threads));
}
public static void manageThread(MyThread thread, ThreadTask task)
{
if (task == ThreadTask.Start)
{
if (thread.status == ThreadStatus.Running)
{
return;
}
if (thread.status == ThreadStatus.Stopped)
{
thread = new MyThread();
}
thread.status = ThreadStatus.Running;
thread.start();
}
else if (task == ThreadTask.Stop)
{
if (thread.status != ThreadStatus.Stopped)
{
thread.interrupt();
thread.status = ThreadStatus.Stopped;
}
}
else if (task == ThreadTask.Sleep)
{
thread.status = ThreadStatus.Sleeping;
}
else if (task == ThreadTask.Wakeup)
{
thread.notify();
thread.status = ThreadStatus.Running;
}
}
public static String getThreadStatus(MyThread[] threads)
{
StringBuffer sb = new StringBuffer();
for (int i = 0; i < threads.length; i++)
{
sb.append(threads[i].getName() + "的狀況:" + threads[i].status).append("\r\n");
}
return sb.toString();
}
}
最初,是我們的辦事器端,它赓續接收客戶真個要求,每收到一個銜接要求,辦事器端會新開一個線程,來處置後續客戶端發來的各類操作指令。
界說辦事器端線程池對象
public class MyThreadPool {
public static void main(String[] args) throws IOException
{
MyThreadPool pool = new MyThreadPool(5);
}
private int threadCount;
private MyThread[] threads = null;
public MyThreadPool(int count) throws IOException
{
this.threadCount = count;
threads = new MyThread[count];
for (int i = 0; i < threads.length; i++)
{
threads[i] = new MyThread();
threads[i].start();
}
Init();
}
private void Init() throws IOException
{
ServerSocket serverSocket = new ServerSocket(5678);
while(true)
{
final Socket socket = serverSocket.accept();
Thread thread = new Thread()
{
public void run()
{
try
{
System.out.println("檢測到一個新的Socket銜接。");
BufferedReader br = new BufferedReader(new InputStreamReader(socket.getInputStream()));
PrintStream ps = new PrintStream(socket.getOutputStream());
String line = null;
while((line = br.readLine()) != null)
{
System.out.println(line);
if (line.equals("Count"))
{
System.out.println("線程池中有5個線程");
}
else if (line.equals("Status"))
{
String status = MyThreadManager.getThreadStatus(threads);
System.out.println(status);
}
else if (line.equals("StartAll"))
{
MyThreadManager.manageThread(threads, ThreadTask.Start);
}
else if (line.equals("StopAll"))
{
MyThreadManager.manageThread(threads, ThreadTask.Stop);
}
else if (line.equals("SleepAll"))
{
MyThreadManager.manageThread(threads, ThreadTask.Sleep);
}
else if (line.equals("WakeupAll"))
{
MyThreadManager.manageThread(threads, ThreadTask.Wakeup);
}
else if (line.equals("End"))
{
break;
}
else
{
System.out.println("Command:" + line);
}
ps.println("OK");
ps.flush();
}
}
catch(Exception ex)
{
ex.printStackTrace();
}
}
};
thread.start();
}
}
}
摸索JDK中的concurrent對象包
為了簡化開辟人員在停止多線程開辟時的任務量,並削減法式中的bug,JDK供給了一套concurrent對象包,我們可以用它來便利的開辟多線程法式。
線程池
我們在下面完成了一個異常“粗陋”的線程池,concurrent對象包中也供給了線程池,並且應用異常便利。
concurrent對象包中的線程池分為3類:ScheduledThreadPool、FixedThreadPool和CachedThreadPool。
起首我們來界說一個Runnable的對象
界說Runnable對象
class MyRunner implements Runnable
{
public void run() {
System.out.println(Thread.currentThread().getName() + "運轉開端");
for(int i = 0; i < 1; i++)
{
try
{
System.out.println(Thread.currentThread().getName() + "正在運轉");
Thread.sleep(200);
}
catch(Exception ex)
{
ex.printStackTrace();
}
}
System.out.println(Thread.currentThread().getName() + "運轉停止");
}
}
可以看出,它的功效異常簡略,只是輸入了線程的履行進程。
ScheduledThreadPool
這和我們日常平凡應用的ScheduledTask比擬相似,或許說很像Timer,它可使得一個線程在指定的一段時光內開端運轉,而且在距離別的一段時光後再次運轉,直到線程池封閉。
示例代碼以下:
ScheduledThreadPool示例
private static void scheduledThreadPoolTest()
{
final ScheduledExecutorService scheduler = Executors.newScheduledThreadPool(3);
MyRunner runner = new MyRunner();
final ScheduledFuture<?> handler1 = scheduler.scheduleAtFixedRate(runner, 1, 10, TimeUnit.SECONDS);
final ScheduledFuture<?> handler2 = scheduler.scheduleWithFixedDelay(runner, 2, 10, TimeUnit.SECONDS);
scheduler.schedule(new Runnable()
{
public void run()
{
handler1.cancel(true);
handler2.cancel(true);
scheduler.shutdown();
}
}, 30, TimeUnit.SECONDS
);
}
FixedThreadPool
這是一個指定容量的線程池,即我們可以指定在統一時光,線程池中最多有多個線程在運轉,超越的線程,須要等線程池中有余暇線程時,能力無機會運轉。
來看上面的代碼:
FixedThreadPool示例
private static void fixedThreadPoolTest()
{
ExecutorService exec = Executors.newFixedThreadPool(3);
for(int i = 0; i < 5; i++)
{
MyRunner runner = new MyRunner();
exec.execute(runner);
}
exec.shutdown();
}
留意它的輸入成果:
pool-1-thread-1運轉開端
pool-1-thread-1正在運轉
pool-1-thread-2運轉開端
pool-1-thread-2正在運轉
pool-1-thread-3運轉開端
pool-1-thread-3正在運轉
pool-1-thread-1運轉停止
pool-1-thread-1運轉開端
pool-1-thread-1正在運轉
pool-1-thread-2運轉停止
pool-1-thread-2運轉開端
pool-1-thread-2正在運轉
pool-1-thread-3運轉停止
pool-1-thread-1運轉停止
pool-1-thread-2運轉停止
可以看到從始至終,最多有3個線程在同時運轉。
CachedThreadPool
這是別的一種線程池,它不須要指定容量,只需有須要,它就會創立新的線程。
它的應用方法和FixedThreadPool異常像,來看上面的代碼:
CachedThreadPool示例
private static void cachedThreadPoolTest()
{
ExecutorService exec = Executors.newCachedThreadPool();
for(int i = 0; i < 5; i++)
{
MyRunner runner = new MyRunner();
exec.execute(runner);
}
exec.shutdown();
}
它的履行成果以下:
pool-1-thread-1運轉開端
pool-1-thread-1正在運轉
pool-1-thread-2運轉開端
pool-1-thread-2正在運轉
pool-1-thread-3運轉開端
pool-1-thread-3正在運轉
pool-1-thread-4運轉開端
pool-1-thread-4正在運轉
pool-1-thread-5運轉開端
pool-1-thread-5正在運轉
pool-1-thread-1運轉停止
pool-1-thread-2運轉停止
pool-1-thread-3運轉停止
pool-1-thread-4運轉停止
pool-1-thread-5運轉停止
可以看到,它創立了5個線程。
處置線程前往值
在有些情形下,我們須要應用線程的前往值,在上述的一切代碼中,線程這是履行了某些操作,沒有任何前往值。
若何做到這一點呢?我們可使用JDK中的Callable<T>和CompletionService<T>,前者前往單個線程的成果,後者前往一組線程的成果。
前往單個線程的成果
照樣直接看代碼吧:
Callable示例
private static void callableTest() throws InterruptedException, ExecutionException
{
ExecutorService exec = Executors.newFixedThreadPool(1);
Callable<String> call = new Callable<String>()
{
public String call()
{
return "Hello World.";
}
};
Future<String> result = exec.submit(call);
System.out.println("線程的前往值是" + result.get());
exec.shutdown();
}
履行成果以下:
線程的前往值是Hello World.
前往線程池中每一個線程的成果
這裡須要應用CompletionService<T>,代碼以下:
CompletionService示例
private static void completionServiceTest() throws InterruptedException, ExecutionException
{
ExecutorService exec = Executors.newFixedThreadPool(10);
CompletionService<String> service = new ExecutorCompletionService<String>(exec);
for (int i = 0; i < 10; i++)
{
Callable<String> call = new Callable<String>()
{
public String call() throws InterruptedException
{
return Thread.currentThread().getName();
}
};
service.submit(call);
}
Thread.sleep(1000);
for(int i = 0; i < 10; i++)
{
Future<String> result = service.take();
System.out.println("線程的前往值是" + result.get());
}
exec.shutdown();
}
履行成果以下:
線程的前往值是pool-2-thread-1
線程的前往值是pool-2-thread-2
線程的前往值是pool-2-thread-3
線程的前往值是pool-2-thread-5
線程的前往值是pool-2-thread-4
線程的前往值是pool-2-thread-6
線程的前往值是pool-2-thread-8
線程的前往值是pool-2-thread-7
線程的前往值是pool-2-thread-9
線程的前往值是pool-2-thread-10
完成臨盆者-花費者模子
關於臨盆者-花費者模子來講,我們應當都不會生疏,平日我們都邑應用某種數據構造來完成它。在concurrent對象包中,我們可使用BlockingQueue來完成臨盆者-花費者模子,以下:
BlockingQueue示例
public class BlockingQueueSample {
public static void main(String[] args)
{
blockingQueueTest();
}
private static void blockingQueueTest()
{
final BlockingQueue<Integer> queue = new LinkedBlockingQueue<Integer>();
final int maxSleepTimeForSetter = 10;
final int maxSleepTimerForGetter = 10;
Runnable setter = new Runnable()
{
public void run()
{
Random r = new Random();
while(true)
{
int value = r.nextInt(100);
try
{
queue.put(new Integer(value));
System.out.println(Thread.currentThread().getName() + "---向隊列中拔出值" + value);
Thread.sleep(r.nextInt(maxSleepTimeForSetter) * 1000);
}
catch(Exception ex)
{
ex.printStackTrace();
}
}
}
};
Runnable getter = new Runnable()
{
public void run()
{
Random r = new Random();
while(true)
{
try
{
if (queue.size() == 0)
{
System.out.println(Thread.currentThread().getName() + "---隊列為空");
}
else
{
int value = queue.take().intValue();
System.out.println(Thread.currentThread().getName() + "---從隊列中獲得值" + value);
}
Thread.sleep(r.nextInt(maxSleepTimerForGetter) * 1000);
}
catch(Exception ex)
{
ex.printStackTrace();
}
}
}
};
ExecutorService exec = Executors.newFixedThreadPool(2);
exec.execute(setter);
exec.execute(getter);
}
}
我們界說了兩個線程,一個線程向Queue中添加數據,一個線程從Queue中取數據。我們可以經由過程掌握maxSleepTimeForSetter和maxSleepTimerForGetter的值,來使得法式得出分歧的成果。
能夠的履行成果以下:
pool-1-thread-1---向隊列中拔出值88
pool-1-thread-2---從隊列中獲得值88
pool-1-thread-1---向隊列中拔出值75
pool-1-thread-2---從隊列中獲得值75
pool-1-thread-2---隊列為空
pool-1-thread-2---隊列為空
pool-1-thread-2---隊列為空
pool-1-thread-1---向隊列中拔出值50
pool-1-thread-2---從隊列中獲得值50
pool-1-thread-2---隊列為空
pool-1-thread-2---隊列為空
pool-1-thread-2---隊列為空
pool-1-thread-2---隊列為空
pool-1-thread-2---隊列為空
pool-1-thread-1---向隊列中拔出值51
pool-1-thread-1---向隊列中拔出值92
pool-1-thread-2---從隊列中獲得值51
pool-1-thread-2---從隊列中獲得值92
由於Queue中的值和Thread的休眠時光都是隨機的,所以履行成果也不是固定的。
應用旌旗燈號量來掌握線程
JDK供給了Semaphore來完成“旌旗燈號量”的功效,它供給了兩個辦法分離用於獲得和釋放旌旗燈號量:acquire和release,示例代碼以下:
SemaPhore示例
private static void semaphoreTest()
{
ExecutorService exec = Executors.newFixedThreadPool(10);
final Semaphore semp = new Semaphore(2);
for (int i = 0; i < 10; i++)
{
Runnable runner = new Runnable()
{
public void run()
{
try
{
semp.acquire();
System.out.println(new Date() + " " + Thread.currentThread().getName() + "正在履行。");
Thread.sleep(5000);
semp.release();
}
catch(Exception ex)
{
ex.printStackTrace();
}
}
};
exec.execute(runner);
}
exec.shutdown();
}
履行成果以下:
Tue May 07 11:22:11 CST 2013 pool-1-thread-1正在履行。
Tue May 07 11:22:11 CST 2013 pool-1-thread-2正在履行。
Tue May 07 11:22:17 CST 2013 pool-1-thread-3正在履行。
Tue May 07 11:22:17 CST 2013 pool-1-thread-4正在履行。
Tue May 07 11:22:22 CST 2013 pool-1-thread-5正在履行。
Tue May 07 11:22:22 CST 2013 pool-1-thread-6正在履行。
Tue May 07 11:22:27 CST 2013 pool-1-thread-7正在履行。
Tue May 07 11:22:27 CST 2013 pool-1-thread-8正在履行。
Tue May 07 11:22:32 CST 2013 pool-1-thread-10正在履行。
Tue May 07 11:22:32 CST 2013 pool-1-thread-9正在履行。
可以看出,雖然線程池中創立了10個線程,然則同時運轉的,只要2個線程。
掌握線程池中一切線程的履行步調
在後面,我們曾經提到,可以用synchronized症結字來掌握單個線程中的履行步調,那末假如我們想要對線程池中的一切線程的履行步調停止掌握的話,應當若何完成呢?
我們有兩種方法,一種是應用CyclicBarrier,一種是應用CountDownLatch。
CyclicBarrier應用了相似於Object.wait的機制,它的結構函數中須要吸收一個整型數字,用來講明它須要掌握的線程數量,當在線程的run辦法中挪用它的await辦法時,它會包管一切的線程都履行到這一步,才會持續履行前面的步調。
示例代碼以下:
CyclicBarrier示例
class MyRunner2 implements Runnable
{
private CyclicBarrier barrier = null;
public MyRunner2(CyclicBarrier barrier)
{
this.barrier = barrier;
}
public void run() {
Random r = new Random();
try
{
for (int i = 0; i < 3; i++)
{
Thread.sleep(r.nextInt(10) * 1000);
System.out.println(new Date() + "--" + Thread.currentThread().getName() + "--第" + (i + 1) + "次期待。");
barrier.await();
}
}
catch(Exception ex)
{
ex.printStackTrace();
}
}
}
private static void cyclicBarrierTest()
{
CyclicBarrier barrier = new CyclicBarrier(3);
ExecutorService exec = Executors.newFixedThreadPool(3);
for (int i = 0; i < 3; i++)
{
exec.execute(new MyRunner2(barrier));
}
exec.shutdown();
}
履行成果以下:
Tue May 07 11:31:20 CST 2013--pool-1-thread-2--第1次期待。
Tue May 07 11:31:21 CST 2013--pool-1-thread-3--第1次期待。
Tue May 07 11:31:24 CST 2013--pool-1-thread-1--第1次期待。
Tue May 07 11:31:24 CST 2013--pool-1-thread-1--第2次期待。
Tue May 07 11:31:26 CST 2013--pool-1-thread-3--第2次期待。
Tue May 07 11:31:30 CST 2013--pool-1-thread-2--第2次期待。
Tue May 07 11:31:32 CST 2013--pool-1-thread-1--第3次期待。
Tue May 07 11:31:33 CST 2013--pool-1-thread-3--第3次期待。
Tue May 07 11:31:33 CST 2013--pool-1-thread-2--第3次期待。
可以看出,thread-2到第1次期待點時,一向比及thread-1達到後才持續履行。
CountDownLatch則是采用相似”倒計時計數器”的機制來掌握線程池中的線程,它有CountDown和Await兩個辦法。示例代碼以下:
CountDownLatch示例
private static void countdownLatchTest() throws InterruptedException
{
final CountDownLatch begin = new CountDownLatch(1);
final CountDownLatch end = new CountDownLatch(5);
ExecutorService exec = Executors.newFixedThreadPool(5);
for (int i = 0; i < 5; i++)
{
Runnable runner = new Runnable()
{
public void run()
{
Random r = new Random();
try
{
begin.await();
System.out.println(Thread.currentThread().getName() + "運轉開端");
Thread.sleep(r.nextInt(10)*1000);
System.out.println(Thread.currentThread().getName() + "運轉停止");
}
catch(Exception ex)
{
ex.printStackTrace();
}
finally
{
end.countDown();
}
}
};
exec.execute(runner);
}
begin.countDown();
end.await();
System.out.println(Thread.currentThread().getName() + "運轉停止");
exec.shutdown();
}
履行成果以下:
pool-1-thread-1運轉開端
pool-1-thread-5運轉開端
pool-1-thread-2運轉開端
pool-1-thread-3運轉開端
pool-1-thread-4運轉開端
pool-1-thread-2運轉停止
pool-1-thread-1運轉停止
pool-1-thread-3運轉停止
pool-1-thread-5運轉停止
pool-1-thread-4運轉停止
main運轉停止