程序師世界是廣大編程愛好者互助、分享、學習的平台,程序師世界有你更精彩!
首頁
編程語言
C語言|JAVA編程
Python編程
網頁編程
ASP編程|PHP編程
JSP編程
數據庫知識
MYSQL數據庫|SqlServer數據庫
Oracle數據庫|DB2數據庫
 程式師世界 >> 編程語言 >> JAVA編程 >> JAVA綜合教程 >> HashMap原理源碼分析,hashmap原理源碼

HashMap原理源碼分析,hashmap原理源碼

編輯:JAVA綜合教程

HashMap原理源碼分析,hashmap原理源碼


1、本文結合項目中使用以及此篇博客http://www.cnblogs.com/chenssy/p/3521565.html 記錄hashmap原理 package java.util;  import java.io.*;    public class HashMap<K,V>      extends AbstractMap<K,V>      implements Map<K,V>, Cloneable, Serializable        // 默認的初始容量(容量為HashMap中槽的數目)是16,且實際容量必須是2的整數次冪。      static final int DEFAULT_INITIAL_CAPACITY = 16       // 最大容量(必須是2的冪且小於2的30次方,傳入容量過大將被這個值替換)      static final int MAXIMUM_CAPACITY = 1 << 30       // 默認加載因子為0.75     static final float DEFAULT_LOAD_FACTOR = 0.75f;        // 存儲數據的Entry數組,長度是2的冪。      // HashMap采用鏈表法解決沖突,每一個Entry本質上是一個單向鏈表      transient Entry[] table;        // HashMap的底層數組中已用槽的數量      transient int size;        // HashMap的阈值,用於判斷是否需要調整HashMap的容量(threshold = 容量*加載因子)      int threshold;        // 加載因子實際大小      final float loadFactor;        // HashMap被改變的次數      transient volatile int modCount;        // 指定“容量大小”和“加載因子”的構造函數      public HashMap(int initialCapacity, float loadFactor) {          if (initialCapacity < 0             throw new IllegalArgumentException("Illegal initial capacity: "                                                initialCapacity);          // HashMap的最大容量只能是MAXIMUM_CAPACITY          if (initialCapacity > MAXIMUM_CAPACITY)              initialCapacity = MAXIMUM_CAPACITY;          //加載因此不能小於0         if (loadFactor <= 0 || Float.isNaN(loadFactor))              throw new IllegalArgumentException("Illegal load factor: "                                                loadFactor);            // 找出“大於initialCapacity”的最小的2的冪          int capacity = 1         while (capacity < initialCapacity)              capacity <<= 1           // 設置“加載因子”          this.loadFactor = loadFactor;          // 設置“HashMap阈值”,當HashMap中存儲數據的數量達到threshold時,就需要將HashMap的容量加倍。          threshold = (int)(capacity * loadFactor);          // 創建Entry數組,用來保存數據          table = new Entry[capacity];          init();             // 指定“容量大小”的構造函數      public HashMap(int initialCapacity) {          this(initialCapacity, DEFAULT_LOAD_FACTOR);             // 默認構造函數。      public HashMap() {          // 設置“加載因子”為默認加載因子0.75          this.loadFactor = DEFAULT_LOAD_FACTOR;          // 設置“HashMap阈值”,當HashMap中存儲數據的數量達到threshold時,就需要將HashMap的容量加倍。          threshold = (int)(DEFAULT_INITIAL_CAPACITY * DEFAULT_LOAD_FACTOR);          // 創建Entry數組,用來保存數據          table = new Entry[DEFAULT_INITIAL_CAPACITY];          init();             // 包含“子Map”的構造函數      public HashMap(Map<? extends K, ? extends V> m) {          this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1                       DEFAULT_INITIAL_CAPACITY), DEFAULT_LOAD_FACTOR);          // 將m中的全部元素逐個添加到HashMap中          putAllForCreate(m);             //求hash值的方法,重新計算hash值     static int hash(int h) {          h ^= (h >>> 20) ^ (h >>> 12);          return h ^ (h >>> 7) ^ (h >>> 4);             // 返回h在數組中的索引值,這裡用&代替取模,旨在提升效率     // h & (length-1)保證返回值的小於length      static int indexFor(int h, int length) {          return h & (length-1);             public int size() {          return size;             public boolean isEmpty() {          return size == 0            // 獲取key對應的value      public V get(Object key) {          if (key == null             return getForNullKey();          // 獲取key的hash值          int hash = hash(key.hashCode());          // 在“該hash值對應的鏈表”上查找“鍵值等於key”的元素          for (Entry<K,V> e = table[indexFor(hash, table.length)];               e != null              e = e.next) {              Object k;              //判斷key是否相同             if (e.hash == hash && ((k = e.key) == key || key.equals(k)))                  return e.value;          }         //沒找到則返回null         return null            // 獲取“key為null”的元素的值      // HashMap將“key為null”的元素存儲在table[0]位置,但不一定是該鏈表的第一個位置!      private V getForNullKey() {          for (Entry<K,V> e = table[0]; e != null; e = e.next) {              if (e.key == null                 return e.value;                   return null            // HashMap是否包含key      public boolean containsKey(Object key) {          return getEntry(key) != null            // 返回“鍵為key”的鍵值對      final Entry<K,V> getEntry(Object key) {          // 獲取哈希值          // HashMap將“key為null”的元素存儲在table[0]位置,“key不為null”的則調用hash()計算哈希值          int hash = (key == null) ? 0 : hash(key.hashCode());          // 在“該hash值對應的鏈表”上查找“鍵值等於key”的元素          for (Entry<K,V> e = table[indexFor(hash, table.length)];               e != null              e = e.next) {              Object k;              if (e.hash == hash &&                  ((k = e.key) == key || (key != null && key.equals(k))))                  return e;                   return null            // 將“key-value”添加到HashMap中      public V put(K key, V value) {          // 若“key為null”,則將該鍵值對添加到table[0]中。          if (key == null             return putForNullKey(value);          // 若“key不為null”,則計算該key的哈希值,然後將其添加到該哈希值對應的鏈表中。          int hash = hash(key.hashCode());          int i = indexFor(hash, table.length);          for (Entry<K,V> e = table[i]; e != null; e = e.next) {              Object k;              // 若“該key”對應的鍵值對已經存在,則用新的value取代舊的value。然後退出!              if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {                  V oldValue = e.value;                  e.value = value;                  e.recordAccess(this);                  return oldValue;                                  // 若“該key”對應的鍵值對不存在,則將“key-value”添加到table中          modCount++;         //將key-value添加到table[i]處         addEntry(hash, key, value, i);          return null            // putForNullKey()的作用是將“key為null”鍵值對添加到table[0]位置      private V putForNullKey(V value) {          for (Entry<K,V> e = table[0]; e != null; e = e.next) {              if (e.key == null) {                  V oldValue = e.value;                  e.value = value;                  e.recordAccess(this);                  return oldValue;                                // 如果沒有存在key為null的鍵值對,則直接題阿見到table[0]處!          modCount++;          addEntry(0, null, value, 0);          return null            // 創建HashMap對應的“添加方法”,      // 它和put()不同。putForCreate()是內部方法,它被構造函數等調用,用來創建HashMap      // 而put()是對外提供的往HashMap中添加元素的方法。      private void putForCreate(K key, V value) {          int hash = (key == null) ? 0 : hash(key.hashCode());          int i = indexFor(hash, table.length);            // 若該HashMap表中存在“鍵值等於key”的元素,則替換該元素的value值          for (Entry<K,V> e = table[i]; e != null; e = e.next) {              Object k;              if (e.hash == hash &&                  ((k = e.key) == key || (key != null && key.equals(k)))) {                  e.value = value;                  return                                 // 若該HashMap表中不存在“鍵值等於key”的元素,則將該key-value添加到HashMap中          createEntry(hash, key, value, i);             // 將“m”中的全部元素都添加到HashMap中。      // 該方法被內部的構造HashMap的方法所調用。      private void putAllForCreate(Map<? extends K, ? extends V> m) {          // 利用迭代器將元素逐個添加到HashMap中          for (Iterator<? extends Map.Entry<? extends K, ? extends V>> i = m.entrySet().iterator(); i.hasNext(); ) {              Map.Entry<? extends K, ? extends V> e = i.next();              putForCreate(e.getKey(), e.getValue());                      // 重新調整HashMap的大小,newCapacity是調整後的容量      void resize(int newCapacity) {          Entry[] oldTable = table;          int oldCapacity = oldTable.length;         //如果就容量已經達到了最大值,則不能再擴容,直接返回         if (oldCapacity == MAXIMUM_CAPACITY) {              threshold = Integer.MAX_VALUE;              return                    // 新建一個HashMap,將“舊HashMap”的全部元素添加到“新HashMap”中,          // 然後,將“新HashMap”賦值給“舊HashMap”。          Entry[] newTable = new Entry[newCapacity];          transfer(newTable);          table = newTable;          threshold = (int)(newCapacity * loadFactor);             // 將HashMap中的全部元素都添加到newTable中      void transfer(Entry[] newTable) {          Entry[] src = table;          int newCapacity = newTable.length;          for (int j = 0; j < src.length; j++) {              Entry<K,V> e = src[j];              if (e != null) {                  src[j] = null                 do                     Entry<K,V> next = e.next;                      int i = indexFor(e.hash, newCapacity);                      e.next = newTable[i];                      newTable[i] = e;                      e = next;                  } while (e != null);                                   // 將"m"的全部元素都添加到HashMap中      public void putAll(Map<? extends K, ? extends V> m) {          // 有效性判斷          int numKeysToBeAdded = m.size();          if (numKeysToBeAdded == 0             return           // 計算容量是否足夠,          // 若“當前閥值容量 < 需要的容量”,則將容量x2。          if (numKeysToBeAdded > threshold) {              int targetCapacity = (int)(numKeysToBeAdded / loadFactor + 1);              if (targetCapacity > MAXIMUM_CAPACITY)                  targetCapacity = MAXIMUM_CAPACITY;              int newCapacity = table.length;              while (newCapacity < targetCapacity)                  newCapacity <<= 1             if (newCapacity > table.length)                  resize(newCapacity);                     // 通過迭代器,將“m”中的元素逐個添加到HashMap中。          for (Iterator<? extends Map.Entry<? extends K, ? extends V>> i = m.entrySet().iterator(); i.hasNext(); ) {              Map.Entry<? extends K, ? extends V> e = i.next();              put(e.getKey(), e.getValue());                      // 刪除“鍵為key”元素      public V remove(Object key) {          Entry<K,V> e = removeEntryForKey(key);          return (e == null ? null : e.value);             // 刪除“鍵為key”的元素      final Entry<K,V> removeEntryForKey(Object key) {          // 獲取哈希值。若key為null,則哈希值為0;否則調用hash()進行計算          int hash = (key == null) ? 0 : hash(key.hashCode());          int i = indexFor(hash, table.length);          Entry<K,V> prev = table[i];          Entry<K,V> e = prev;            // 刪除鏈表中“鍵為key”的元素          // 本質是“刪除單向鏈表中的節點”          while (e != null) {              Entry<K,V> next = e.next;              Object k;              if (e.hash == hash &&                  ((k = e.key) == key || (key != null && key.equals(k)))) {                  modCount++;                  size--;                  if (prev == e)                      table[i] = next;                  else                     prev.next = next;                  e.recordRemoval(this);                  return e;                           prev = e;              e = next;                     return e;             // 刪除“鍵值對”      final Entry<K,V> removeMapping(Object o) {          if (!(o instanceof Map.Entry))              return null           Map.Entry<K,V> entry = (Map.Entry<K,V>) o;          Object key = entry.getKey();          int hash = (key == null) ? 0 : hash(key.hashCode());          int i = indexFor(hash, table.length);          Entry<K,V> prev = table[i];          Entry<K,V> e = prev;            // 刪除鏈表中的“鍵值對e”          // 本質是“刪除單向鏈表中的節點”          while (e != null) {              Entry<K,V> next = e.next;              if (e.hash == hash && e.equals(entry)) {                  modCount++;                  size--;                  if (prev == e)                      table[i] = next;                  else                     prev.next = next;                  e.recordRemoval(this);                  return e;                           prev = e;              e = next;                     return e;             // 清空HashMap,將所有的元素設為null      public void clear() {          modCount++;          Entry[] tab = table;          for (int i = 0; i < tab.length; i++)              tab[i] = null         size = 0            // 是否包含“值為value”的元素      public boolean containsValue(Object value) {      // 若“value為null”,則調用containsNullValue()查找      if (value == null             return containsNullValue();        // 若“value不為null”,則查找HashMap中是否有值為value的節點。      Entry[] tab = table;          for (int i = 0; i < tab.length ; i++)              for (Entry e = tab[i] ; e != null ; e = e.next)                  if (value.equals(e.value))                      return true     return false            // 是否包含null值      private boolean containsNullValue() {      Entry[] tab = table;          for (int i = 0; i < tab.length ; i++)              for (Entry e = tab[i] ; e != null ; e = e.next)                  if (e.value == null                     return true     return false            // 克隆一個HashMap,並返回Object對象      public Object clone() {          HashMap<K,V> result = null         try             result = (HashMap<K,V>)super.clone();          } catch (CloneNotSupportedException e) {              // assert false;                   result.table = new Entry[table.length];          result.entrySet = null         result.modCount = 0         result.size = 0         result.init();          // 調用putAllForCreate()將全部元素添加到HashMap中          result.putAllForCreate(this);            return result;             // Entry是單向鏈表。      // 它是 “HashMap鏈式存儲法”對應的鏈表。      // 它實現了Map.Entry 接口,即實現getKey(), getValue(), setValue(V value), equals(Object o), hashCode()這些函數      static class Entry<K,V> implements Map.Entry<K,V> {          final K key;          V value;          // 指向下一個節點          Entry<K,V> next;          final int hash;            // 構造函數。          // 輸入參數包括"哈希值(h)", "鍵(k)", "值(v)", "下一節點(n)"          Entry(int h, K k, V v, Entry<K,V> n) {              value = v;              next = n;              key = k;              hash = h;                     public final K getKey() {              return key;                     public final V getValue() {              return value;                     public final V setValue(V newValue) {              V oldValue = value;              value = newValue;              return oldValue;                     // 判斷兩個Entry是否相等          // 若兩個Entry的“key”和“value”都相等,則返回true。          // 否則,返回false          public final boolean equals(Object o) {              if (!(o instanceof Map.Entry))                  return false             Map.Entry e = (Map.Entry)o;              Object k1 = getKey();              Object k2 = e.getKey();              if (k1 == k2 || (k1 != null && k1.equals(k2))) {                  Object v1 = getValue();                  Object v2 = e.getValue();                  if (v1 == v2 || (v1 != null && v1.equals(v2)))                      return true                          return false                    // 實現hashCode()          public final int hashCode() {              return (key==null   ? 0 : key.hashCode()) ^                     (value==null ? 0 : value.hashCode());                     public final String toString() {              return getKey() + "=" + getValue();                     // 當向HashMap中添加元素時,繪調用recordAccess()。          // 這裡不做任何處理          void recordAccess(HashMap<K,V> m) {                     // 當從HashMap中刪除元素時,繪調用recordRemoval()。          // 這裡不做任何處理          void recordRemoval(HashMap<K,V> m) {                      // 新增Entry。將“key-value”插入指定位置,bucketIndex是位置索引。      void addEntry(int hash, K key, V value, int bucketIndex) {          // 保存“bucketIndex”位置的值到“e”中          Entry<K,V> e = table[bucketIndex];          // 設置“bucketIndex”位置的元素為“新Entry”,          // 設置“e”為“新Entry的下一個節點”          table[bucketIndex] = new Entry<K,V>(hash, key, value, e);          // 若HashMap的實際大小 不小於 “阈值”,則調整HashMap的大小          if (size++ >= threshold)              resize(2 * table.length);             // 創建Entry。將“key-value”插入指定位置。      void createEntry(int hash, K key, V value, int bucketIndex) {          // 保存“bucketIndex”位置的值到“e”中          Entry<K,V> e = table[bucketIndex];          // 設置“bucketIndex”位置的元素為“新Entry”,          // 設置“e”為“新Entry的下一個節點”          table[bucketIndex] = new Entry<K,V>(hash, key, value, e);          size++;             // HashIterator是HashMap迭代器的抽象出來的父類,實現了公共了函數。      // 它包含“key迭代器(KeyIterator)”、“Value迭代器(ValueIterator)”和“Entry迭代器(EntryIterator)”3個子類。      private abstract class HashIterator<E> implements Iterator<E> {          // 下一個元素          Entry<K,V> next;          // expectedModCount用於實現fast-fail機制。          int expectedModCount;          // 當前索引          int index;          // 當前元素          Entry<K,V> current;            HashIterator() {              expectedModCount = modCount;              if (size > 0) { // advance to first entry                  Entry[] t = table;                  // 將next指向table中第一個不為null的元素。                  // 這裡利用了index的初始值為0,從0開始依次向後遍歷,直到找到不為null的元素就退出循環。                  while (index < t.length && (next = t[index++]) == null                                                      public final boolean hasNext() {              return next != null                    // 獲取下一個元素          final Entry<K,V> nextEntry() {              if (modCount != expectedModCount)                  throw new ConcurrentModificationException();              Entry<K,V> e = next;              if (e == null                 throw new NoSuchElementException();                // 注意!!!              // 一個Entry就是一個單向鏈表              // 若該Entry的下一個節點不為空,就將next指向下一個節點;              // 否則,將next指向下一個鏈表(也是下一個Entry)的不為null的節點。              if ((next = e.next) == null) {                  Entry[] t = table;                  while (index < t.length && (next = t[index++]) == null                                               current = e;              return e;                     // 刪除當前元素          public void remove() {              if (current == null                 throw new IllegalStateException();              if (modCount != expectedModCount)                  throw new ConcurrentModificationException();              Object k = current.key;              current = null             HashMap.this.removeEntryForKey(k);              expectedModCount = modCount;                        // value的迭代器      private final class ValueIterator extends HashIterator<V> {          public V next() {              return nextEntry().value;                      // key的迭代器      private final class KeyIterator extends HashIterator<K> {          public K next() {              return nextEntry().getKey();                      // Entry的迭代器      private final class EntryIterator extends HashIterator<Map.Entry<K,V>> {          public Map.Entry<K,V> next() {              return nextEntry();                      // 返回一個“key迭代器”      Iterator<K> newKeyIterator()   {          return new KeyIterator();           // 返回一個“value迭代器”      Iterator<V> newValueIterator()   {          return new ValueIterator();           // 返回一個“entry迭代器”      Iterator<Map.Entry<K,V>> newEntryIterator()   {          return new EntryIterator();             // HashMap的Entry對應的集合      private transient Set<Map.Entry<K,V>> entrySet = null       // 返回“key的集合”,實際上返回一個“KeySet對象”      public Set<K> keySet() {          Set<K> ks = keySet;          return (ks != null ? ks : (keySet = new KeySet()));             // Key對應的集合      // KeySet繼承於AbstractSet,說明該集合中沒有重復的Key。      private final class KeySet extends AbstractSet<K> {          public Iterator<K> iterator() {              return newKeyIterator();                   public int size() {              return size;                   public boolean contains(Object o) {              return containsKey(o);                   public boolean remove(Object o) {              return HashMap.this.removeEntryForKey(o) != null                  public void clear() {              HashMap.this.clear();                      // 返回“value集合”,實際上返回的是一個Values對象      public Collection<V> values() {          Collection<V> vs = values;          return (vs != null ? vs : (values = new Values()));             // “value集合”      // Values繼承於AbstractCollection,不同於“KeySet繼承於AbstractSet”,      // Values中的元素能夠重復。因為不同的key可以指向相同的value。      private final class Values extends AbstractCollection<V> {          public Iterator<V> iterator() {              return newValueIterator();                   public int size() {              return size;                   public boolean contains(Object o) {              return containsValue(o);                   public void clear() {              HashMap.this.clear();                      // 返回“HashMap的Entry集合”      public Set<Map.Entry<K,V>> entrySet() {          return entrySet0();             // 返回“HashMap的Entry集合”,它實際是返回一個EntrySet對象      private Set<Map.Entry<K,V>> entrySet0() {          Set<Map.Entry<K,V>> es = entrySet;          return es != null ? es : (entrySet = new EntrySet());             // EntrySet對應的集合      // EntrySet繼承於AbstractSet,說明該集合中沒有重復的EntrySet。      private final class EntrySet extends AbstractSet<Map.Entry<K,V>> {          public Iterator<Map.Entry<K,V>> iterator() {              return newEntryIterator();                   public boolean contains(Object o) {              if (!(o instanceof Map.Entry))                  return false             Map.Entry<K,V> e = (Map.Entry<K,V>) o;              Entry<K,V> candidate = getEntry(e.getKey());              return candidate != null && candidate.equals(e);                   public boolean remove(Object o) {              return removeMapping(o) != null                  public int size() {              return size;                   public void clear() {              HashMap.this.clear();                      // java.io.Serializable的寫入函數      // 將HashMap的“總的容量,實際容量,所有的Entry”都寫入到輸出流中      private void writeObject(java.io.ObjectOutputStream s)          throws IOException               Iterator<Map.Entry<K,V>> i =              (size > 0) ? entrySet0().iterator() : null           // Write out the threshold, loadfactor, and any hidden stuff          s.defaultWriteObject();            // Write out number of buckets          s.writeInt(table.length);            // Write out size (number of Mappings)          s.writeInt(size);            // Write out keys and values (alternating)          if (i != null) {              while (i.hasNext()) {              Map.Entry<K,V> e = i.next();              s.writeObject(e.getKey());              s.writeObject(e.getValue());                                   private static final long serialVersionUID = 362498820763181265L;        // java.io.Serializable的讀取函數:根據寫入方式讀出      // 將HashMap的“總的容量,實際容量,所有的Entry”依次讀出      private void readObject(java.io.ObjectInputStream s)           throws IOException, ClassNotFoundException               // Read in the threshold, loadfactor, and any hidden stuff          s.defaultReadObject();            // Read in number of buckets and allocate the bucket array;          int numBuckets = s.readInt();          table = new Entry[numBuckets];            init();  // Give subclass a chance to do its thing.            // Read in size (number of Mappings)          int size = s.readInt();            // Read the keys and values, and put the mappings in the HashMap          for (int i=0; i<size; i++) {              K key = (K) s.readObject();              V value = (V) s.readObject();              putForCreate(key, value);                      // 返回“HashMap總的容量”      int   capacity()     { return table.length; }      // 返回“HashMap的加載因子”      float loadFactor()   { return loadFactor;   }  } 1、首先要清楚HashMap的存儲結構,如下圖所示:

圖中,紫色部分即代表哈希表,也稱為哈希數組,數組的每個元素都是一個單鏈表的頭節點,鏈表是用來解決沖突的,如果不同的key映射到了數組的同一位置處,就將其放入單鏈表中。

2、首先看鏈表中節點的數據結構:

// Entry是單向鏈表。  // 它是 “HashMap鏈式存儲法”對應的鏈表。  // 它實現了Map.Entry 接口,即實現getKey(), getValue(), setValue(V value), equals(Object o), hashCode()這些函數  static class Entry<K,V> implements Map.Entry<K,V> {      final K key;      V value;      // 指向下一個節點      Entry<K,V> next;      final int hash;        // 構造函數。      // 輸入參數包括"哈希值(h)", "鍵(k)", "值(v)", "下一節點(n)"      Entry(int h, K k, V v, Entry<K,V> n) {          value = v;          next = n;          key = k;          hash = h;             public final K getKey() {          return key;             public final V getValue() {          return value;             public final V setValue(V newValue) {          V oldValue = value;          value = newValue;          return oldValue;             // 判斷兩個Entry是否相等      // 若兩個Entry的“key”和“value”都相等,則返回true。      // 否則,返回false      public final boolean equals(Object o) {          if (!(o instanceof Map.Entry))              return false         Map.Entry e = (Map.Entry)o;          Object k1 = getKey();          Object k2 = e.getKey();          if (k1 == k2 || (k1 != null && k1.equals(k2))) {              Object v1 = getValue();              Object v2 = e.getValue();              if (v1 == v2 || (v1 != null && v1.equals(v2)))                  return true                  return false            // 實現hashCode()      public final int hashCode() {          return (key==null   ? 0 : key.hashCode()) ^                 (value==null ? 0 : value.hashCode());             public final String toString() {          return getKey() + "=" + getValue();             // 當向HashMap中添加元素時,繪調用recordAccess()。      // 這裡不做任何處理      void recordAccess(HashMap<K,V> m) {             // 當從HashMap中刪除元素時,繪調用recordRemoval()。      // 這裡不做任何處理      void recordRemoval(HashMap<K,V> m) {       } 它的結構元素除了key、value、hash外,還有next,next指向下一個節點。另外,這裡覆寫了equals和hashCode方法來保證鍵值對的獨一無二。

3、HashMap共有四個構造方法。構造方法中提到了兩個很重要的參數:初始容量和加載因子。這兩個參數是影響HashMap性能的重要參數,其中容量表示哈希表中槽的數量(即哈希數組的長度),初始容量是創建哈希表時的容量(從構造函數中可以看出,如果不指明,則默認為16),加載因子是哈希表在其容量自動增加之前可以達到多滿的一種尺度,當哈希表中的條目數超出了加載因子與當前容量的乘積時,則要對該哈希表進行 resize 操作(即擴容)。

下面說下加載因子,如果加載因子越大,對空間的利用更充分,但是查找效率會降低(鏈表長度會越來越長);如果加載因子太小,那麼表中的數據將過於稀疏(很多空間還沒用,就開始擴容了),對空間造成嚴重浪費。如果我們在構造方法中不指定,則系統默認加載因子為0.75,這是一個比較理想的值,一般情況下我們是無需修改的。

另外,無論我們指定的容量為多少,構造方法都會將實際容量設為不小於指定容量的2的次方的一個數,且最大值不能超過2的30次方

4、HashMap中key和value都允許為null。

  1. 上一頁:
  2. 下一頁:
Copyright © 程式師世界 All Rights Reserved