一、簡單回顧ConcurrentHashMap在jdk1.7中的設計
先簡單看下ConcurrentHashMap類在jdk1.7中的設計,其基本結構如圖所示:
每一個segment都是一個HashEntry<K,V>[] table, table中的每一個元素本質上都是一個HashEntry的單向隊列。比如table[3]為首節點,table[3]->next為節點1,之後為節點2,依次類推。
public class ConcurrentHashMap<K, V> extends AbstractMap<K, V> implements ConcurrentMap<K, V>, Serializable { // 將整個hashmap分成幾個小的map,每個segment都是一個鎖;與hashtable相比,這麼設計的目的是對於put, remove等操作,可以減少並發沖突,對 // 不屬於同一個片段的節點可以並發操作,大大提高了性能 final Segment<K,V>[] segments; // 本質上Segment類就是一個小的hashmap,裡面table數組存儲了各個節點的數據,繼承了ReentrantLock, 可以作為互拆鎖使用 static final class Segment<K,V> extends ReentrantLock implements Serializable { transient volatile HashEntry<K,V>[] table; transient int count; } // 基本節點,存儲Key, Value值 static final class HashEntry<K,V> { final int hash; final K key; volatile V value; volatile HashEntry<K,V> next; } }
二、在jdk1.8中主要做了2方面的改進
改進一:取消segments字段,直接采用transient volatile HashEntry<K,V>[] table保存數據,采用table數組元素作為鎖,從而實現了對每一行數據進行加鎖,進一步減少並發沖突的概率。
改進二:將原先table數組+單向鏈表的數據結構,變更為table數組+單向鏈表+紅黑樹的結構。對於hash表來說,最核心的能力在於將key hash之後能均勻的分布在數組中。如果hash之後散列的很均勻,那麼table數組中的每個隊列長度主要為0或者1。但實際情況並非總是如此理想,雖然ConcurrentHashMap類默認的加載因子為0.75,但是在數據量過大或者運氣不佳的情況下,還是會存在一些隊列長度過長的情況,如果還是采用單向列表方式,那麼查詢某個節點的時間復雜度為O(n);因此,對於個數超過8(默認值)的列表,jdk1.8中采用了紅黑樹的結構,那麼查詢的時間復雜度可以降低到O(logN),可以改進性能。
為了說明以上2個改動,看一下put操作是如何實現的。
final V putVal(K key, V value, boolean onlyIfAbsent) { if (key == null || value == null) throw new NullPointerException(); int hash = spread(key.hashCode()); int binCount = 0; for (Node<K,V>[] tab = table;;) { Node<K,V> f; int n, i, fh; // 如果table為空,初始化;否則,根據hash值計算得到數組索引i,如果tab[i]為空,直接新建節點Node即可。注:tab[i]實質為鏈表或者紅黑樹的首節點。 if (tab == null || (n = tab.length) == 0) tab = initTable(); else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) { if (casTabAt(tab, i, null, new Node<K,V>(hash, key, value, null))) break; // no lock when adding to empty bin } // 如果tab[i]不為空並且hash值為MOVED,說明該鏈表正在進行transfer操作,返回擴容完成後的table。 else if ((fh = f.hash) == MOVED) tab = helpTransfer(tab, f); else { V oldVal = null; // 針對首個節點進行加鎖操作,而不是segment,進一步減少線程沖突 synchronized (f) { if (tabAt(tab, i) == f) { if (fh >= 0) { binCount = 1; for (Node<K,V> e = f;; ++binCount) { K ek; // 如果在鏈表中找到值為key的節點e,直接設置e.val = value即可。 if (e.hash == hash && ((ek = e.key) == key || (ek != null && key.equals(ek)))) { oldVal = e.val; if (!onlyIfAbsent) e.val = value; break; } // 如果沒有找到值為key的節點,直接新建Node並加入鏈表即可。 Node<K,V> pred = e; if ((e = e.next) == null) { pred.next = new Node<K,V>(hash, key, value, null); break; } } } // 如果首節點為TreeBin類型,說明為紅黑樹結構,執行putTreeVal操作。 else if (f instanceof TreeBin) { Node<K,V> p; binCount = 2; if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key, value)) != null) { oldVal = p.val; if (!onlyIfAbsent) p.val = value; } } } } if (binCount != 0) { // 如果節點數>=8,那麼轉換鏈表結構為紅黑樹結構。 if (binCount >= TREEIFY_THRESHOLD) treeifyBin(tab, i); if (oldVal != null) return oldVal; break; } } } // 計數增加1,有可能觸發transfer操作(擴容)。 addCount(1L, binCount); return null; }
另外,在其他方面也有一些小的改進,比如新增字段 transient volatile CounterCell[] counterCells; 可方便的計算hashmap中所有元素的個數,性能大大優於jdk1.7中的size()方法。
三、ConcurrentHashMap jdk1.7、jdk1.8性能比較
測試程序如下:
public class CompareConcurrentHashMap { private static ConcurrentHashMap<String, Integer> map = new ConcurrentHashMap<String, Integer>(40000); public static void putPerformance(int index, int num) { for (int i = index; i < (num + index) ; i++) map.put(String.valueOf(i), i); } public static void getPerformance2() { long start = System.currentTimeMillis(); for (int i = 0; i < 400000; i++) map.get(String.valueOf(i)); long end = System.currentTimeMillis(); System.out.println("get: it costs " + (end - start) + " ms"); } public static void main(String[] args) throws InterruptedException { long start = System.currentTimeMillis(); final CountDownLatch cdLatch = new CountDownLatch(4); for (int i = 0; i < 4; i++) { final int finalI = i; new Thread(new Runnable() { public void run() { CompareConcurrentHashMap.putPerformance(100000 * finalI, 100000); cdLatch.countDown(); } }).start(); } cdLatch.await(); long end = System.currentTimeMillis(); System.out.println("put: it costs " + (end - start) + " ms"); CompareConcurrentHashMap.getPerformance2(); } }
程序運行多次後取平均值,結果如下:
四、Collections.synchronizedList和CopyOnWriteArrayList性能分析
CopyOnWriteArrayList在線程對其進行變更操作的時候,會拷貝一個新的數組以存放新的字段,因此寫操作性能很差;而Collections.synchronizedList讀操作采用了synchronized,因此讀性能較差。以下為測試程序:
public class App { private static List<String> arrayList = Collections.synchronizedList(new ArrayList<String>()); private static List<String> copyOnWriteArrayList = new CopyOnWriteArrayList<String>(); private static CountDownLatch cdl1 = new CountDownLatch(2); private static CountDownLatch cdl2 = new CountDownLatch(2); private static CountDownLatch cdl3 = new CountDownLatch(2); private static CountDownLatch cdl4 = new CountDownLatch(2); static class Thread1 extends Thread { @Override public void run() { for (int i = 0; i < 10000; i++) arrayList.add(String.valueOf(i)); cdl1.countDown(); } } static class Thread2 extends Thread { @Override public void run() { for (int i = 0; i < 10000; i++) copyOnWriteArrayList.add(String.valueOf(i)); cdl2.countDown(); } } static class Thread3 extends Thread1 { @Override public void run() { int size = arrayList.size(); for (int i = 0; i < size; i++) arrayList.get(i); cdl3.countDown(); } } static class Thread4 extends Thread1 { @Override public void run() { int size = copyOnWriteArrayList.size(); for (int i = 0; i < size; i++) copyOnWriteArrayList.get(i); cdl4.countDown(); } } public static void main(String[] args) throws InterruptedException { long start1 = System.currentTimeMillis(); new Thread1().start(); new Thread1().start(); cdl1.await(); System.out.println("arrayList add: " + (System.currentTimeMillis() - start1)); long start2 = System.currentTimeMillis(); new Thread2().start(); new Thread2().start(); cdl2.await(); System.out.println("copyOnWriteArrayList add: " + (System.currentTimeMillis() - start2)); long start3 = System.currentTimeMillis(); new Thread3().start(); new Thread3().start(); cdl3.await(); System.out.println("arrayList get: " + (System.currentTimeMillis() - start3)); long start4 = System.currentTimeMillis(); new Thread4().start(); new Thread4().start(); cdl4.await(); System.out.println("copyOnWriteArrayList get: " + (System.currentTimeMillis() - start4)); } }
結果如下: