程序師世界是廣大編程愛好者互助、分享、學習的平台,程序師世界有你更精彩!
首頁
編程語言
C語言|JAVA編程
Python編程
網頁編程
ASP編程|PHP編程
JSP編程
數據庫知識
MYSQL數據庫|SqlServer數據庫
Oracle數據庫|DB2數據庫
 程式師世界 >> 編程語言 >> JAVA編程 >> JAVA綜合教程 >> 5個強大的Java分布式緩存框架推薦,java框架

5個強大的Java分布式緩存框架推薦,java框架

編輯:JAVA綜合教程

5個強大的Java分布式緩存框架推薦,java框架


在開發中大型Java軟件項目時,很多Java架構師都會遇到數據庫讀寫瓶頸,如果你在系統架構時並沒有將緩存策略考慮進去,或者並沒有選擇更優的 緩存策略,那麼到時候重構起來將會是一個噩夢。本文主要是分享了5個常用的Java分布式緩存框架,這些緩存框架支持多台服務器的緩存讀寫功能,可以讓你 的緩存系統更容易擴展。

 1、Ehcache – Java分布式緩存框架

  Ehcache是一個Java實現的開源分布式緩存框架,EhCache 可以有效地減輕數據庫的負載,可以讓數據保存在不同服務器的內存中,在需要數據的時候可以快速存取。同時EhCache 擴展非常簡單,官方提供的Cache配置方式有好幾種。你可以通過聲明配置、在xml中配置、在程序裡配置或者調用構造方法時傳入不同的參數。

<ehcache> <diskStore path=”java.io.tmpdir”/> <defaultCache maxElementsInMemory=”10000″ eternal=”false” timeToIdleSeconds=”120″ timeToLiveSeconds=”120″ overflowToDisk=”true” maxElementsOnDisk=”10000000″ diskPersistent=”false” diskExpiryThreadIntervalSeconds=”120″ memoryStoreEvictionPolicy=”LRU” /> </ehcache>

總結  

在同類的Java緩存框架中,Ehcache配置相對簡單,也比較容易上手,最大的優勢是它支持分布式緩存

 

2、Cacheonix – 高性能Java分布式緩存系統

  Cacheonix同樣也是一個基於Java的分布式集群緩存系統,它同樣可以幫助你實現分布式緩存的部署。

  官方網站:http://www.cacheonix.com/

  Cacheonix的特點

  • 可靠的分布式 Java 緩存
  • 通過復制實現高可用性
  • 支持泛型的緩存 API
  • 可與 ORM 框架集成
  • 使用數據分區實現負載均衡
  • 支持非多播網絡
  • 高性能計算
  • 快速的本地 Java 緩存
  • 分布式鎖機制

  Cacheonix的架構圖

<?xml version ="1.0"?> <cacheonix xmlns="http://www.cacheonix.com/schema/configuration" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.cacheonix.com/schema/configuration http://www.cacheonix.com/schema/cacheonix-config-2.0.xsd"> <server> <listener> <tcp port="8879" buffer="128k"/> </listener> <broadcast> <multicast multicastAddress="225.0.1.2" multicastPort="9998" multicastTTL="0"/> </broadcast> <partitionedCache name="customer.cache"> <store> <lru maxElements="10000" maxBytes="10mb"/> <expiration idleTime="120s"/> </store> </partitionedCache> <partitionedCache name="invoice.cache"> <store> <lru maxElements="10000" maxBytes="10mb"/> <expiration idleTime="120s"/> </store> </partitionedCache> <partitionedCache name="search.results.cache"> <store> <lru maxBytes="5mb"/> </store> </partitionedCache> </server> </cacheonix>

  Cacheonix緩存的存取

  從配置中獲取Cacheonix實例

/**
 * Tester for CacheManager.
 */
public final class CacheonixTest extends TestCase {

   private Cacheonix cacheonix;

   /**
    * Tests getting an instance of CacheManager using a default Cacheonix configuration.
    */
   public void testGetInstance() {

      assertNotNull("Cacheonix created in setUp() method should not be null", cacheonix);
   }

   /**
    * Sets up the fixture. This method is called before a test is executed.
    * <p/>
    * Cacheonix receives the default configuration from a <code>cacheonix-config.xml</code> found in a class path or
    * using a file that name is defined by system parameter <code>cacheonix.config.xml<code>.
    */
   protected void setUp() throws Exception {

      super.setUp();

      // Get Cacheonix using a default Cacheonix configuration. The configuration
      // is stored in the conf/cacheonix-config.xml
      cacheonix = Cacheonix.getInstance();
   }

   /**
    * Tears down the fixture. This method is called after a test is executed.
    */
   protected void tearDown() throws Exception {

      // Cache manager has be be shutdown upon application exit.
      // Note that call to shutdown() here uses unregisterSingleton
      // set to true. This is necessary to support clean restart on setUp()
      cacheonix.shutdown(ShutdownMode.GRACEFUL_SHUTDOWN, true);
      cacheonix = null;

      super.tearDown();
   }
}

  讀取緩存

Cacheonix cacheonix = Cacheonix.getInstance();
Cache<String, String> cache = cacheonix.getCache("my.cache");
String cachedValue = cache.get("my.key");

  設置緩存

Cacheonix cacheonix = Cacheonix.getInstance();
Cache<String, String> cache = cacheonix.getCache("my.cache");
String replacedValue = cache.put("my.key", "my.value");

  刪除緩存

Cacheonix cacheonix = Cacheonix.getInstance();
Cache<String, String> cache = cacheonix.getCache("my.cache");
String removedValue = cache.remove("my.key");

總結

Cacheonix作為一款開源的分布式緩存框架,可以滿足中型企業規模的系統架構,對提升系統性能有非常棒的作用。

 

3、ASimpleCache – 輕量級Android緩存框架

  ASimpleCache是一款基於Android的輕量級緩存框架,它只有一個Java文件,ASimpleCache基本可以緩存常用的Android對象,包括普通字符串、JSON對象、經過序列化的Java對象、字節數組等。

ACache mCache = ACache.get(this); mCache.put("test_key1", "test value"); mCache.put("test_key2", "test value", 10);//保存10秒,如果超過10秒去獲取這個key,將為null mCache.put("test_key3", "test value", 2 * ACache.TIME_DAY);//保存兩天,如果超過兩天去獲取這個key,將為null

  獲取緩存數據:

ACache mCache = ACache.get(this);
String value = mCache.getAsString("test_key1");

總結  

ASimpleCache的作者是國人,代碼托管在Github上,也用過ASimpleCache的同學可以分享一下使用心得,為開源事業貢獻一份力量。

 

4、JBoss Cache – 基於事物的Java緩存框架

  JBoss Cache是一款基於Java的事務處理緩存系統,它的目標是構建一個以Java框架為基礎的集群解決方案,可以是服務器應用,也可以是Java SE應用。

TreeCache tree = new TreeCache();

  然後是讀進配置文件

PropertyConfigurator config = new PropertyConfigurator();
config.configure("配置文件.xml");

  然後開始服務

Tree.startService();

  因為Tree的結構是用NODE來Access的,TreeCache這裡就很簡單的用:

  /level1/level2/node1 來表示兩級Tree下面的Node1。

  現在我們添加幾個要Cache的對象。

Tree.put("/level1/level2/node1", "key1", "value1");
String[] array = { "1", "2", "3", "4" }
Tree.put("/level3/array/", "myarray", array);

  大家可以看到,TreeCache裡面可以存儲任何種類的對象,包括所有復雜對象。

  讀取對象就很方便了,

String s = (String)Tree.get("/level1/level2/node1/", "key1");

  value1就讀出來了。

  同理:

String[] sarr = (String[]) Tree.get("/level3/array/","myarray");

  System.out.println(sarr[1]) 會顯示2

  最後停止服務:

Tree.stopService();

  JBoss Cache的FileCacheLoader示例

  首先創建一個FileCache類封裝JBoss Cache的相關操作,如下:

package com.javaeye.terrencexu.jbosscache;  

import java.io.File;  
import java.util.Map;  

import org.jboss.cache.Cache;  
import org.jboss.cache.DefaultCacheFactory;  
import org.jboss.cache.Fqn;  
import org.jboss.cache.Node;  
import org.jboss.cache.config.CacheLoaderConfig;  
import org.jboss.cache.config.Configuration;  
import org.jboss.cache.loader.FileCacheLoader;  
import org.jboss.cache.loader.FileCacheLoaderConfig;  

/** 
 * <p> 
 * This is demo to illustrate how to use the JBoss Cache to cache your 
 * frequently accessed Java objects in order to dramatically improve 
 * the performance of your applications. This makes it easy to remove 
 * data access bottlenecks, such as connecting to a database. 
 * </p> 
 * <p> 
 * As a rule of thumb, it is recommended that the FileCacheLoader not  
 * be used in a highly concurrent, transactional or stressful environment, 
 * ant its use is restricted to testing. 
 * </p> 
 *  
 * @author TerrenceX 
 * 
 * @param <T> 
 */  
public class FileCache<T> {  

    /** 
     * The JBoss Cache, used to cache frequently accessed Java objects. 
     */  
    private Cache<String, T> cache;  

    /** 
     * @constructor 
     * @param fsCacheLoaderLocation The file system location to store the cache 
     */  
    public FileCache(File fsCacheLoaderLocation) {  
        cache = initCache(fsCacheLoaderLocation);  
    }  

    /** 
     * Create a Cache and whose cache loader type is File Cache Loader 
     *  
     * @param fsCacheLoaderLocation The file position used to store the cache. 
     *  
     * @return Cache 
     */  
    public Cache<String, T> initCache(File fsCacheLoaderLocation) {  
        // initiate a FileCacheLoader instance  
        FileCacheLoader fsCacheLoader = new FileCacheLoader();  

        // prepare the file cache loader configuration file for File Cache Loader  
        FileCacheLoaderConfig fsCacheLoaderConfig = new FileCacheLoaderConfig();  
        fsCacheLoaderConfig.setLocation(fsCacheLoaderLocation.toString());  
        fsCacheLoaderConfig.setCacheLoader(fsCacheLoader);  

        // set configuration to File Cache Loader  
        fsCacheLoader.setConfig(fsCacheLoaderConfig);  

        // prepare the configuration for Cache  
        Configuration config = new Configuration();  
        config.setCacheLoaderConfig(new CacheLoaderConfig());  
        config.getCacheLoaderConfig().addIndividualCacheLoaderConfig(fsCacheLoaderConfig);  

        // create a Cache through the default cache factory  
        return new DefaultCacheFactory<String, T>().createCache(config);  
    }  

    /** 
     * Add a new node into the tree-node hierarchy 
     *  
     * @param fqn Full Qualified Name for the new node 
     * @return 
     */  
    public Node<String, T> addNode(Fqn<String> fqn) {  
        return cache.getRoot().addChild(fqn);  
    }  

    /** 
     * Remove a specified node from the tree-node hierarchy 
     *  
     * @param fqn Full Qualified Name for the specified node 
     */  
    public void removeNode(Fqn<String> fqn) {  
        cache.removeNode(fqn);  
    }  

    /** 
     * Add node information to the specified node. 
     *  
     * @param fqn Full Qualified Name for the specified node 
     * @param key The key of the node information 
     * @param value The value of the node information 
     */  
    public void addNodeInfo(Fqn<String> fqn, String key, T value) {  
        cache.put(fqn, key, value);  
    }  

    /** 
     * Batch add node information to the specified node. 
     *  
     * @param fqn Full Qualified Name for the specified node 
     * @param infos Node informations map 
     */  
    public void addNodeInfos(Fqn<String> fqn, Map<String, T> infos) {  
        cache.put(fqn, infos);  
    }  

    /** 
     * Get node information from the specified node. 
     *  
     * @param fqn Full Qualified Name for the specified node 
     * @param key The key of the node information 
     * @return 
     */  
    public T getNodeInfo(Fqn<String> fqn, String key) {  
        return cache.get(fqn, key);  
    }  

    /** 
     * Remove node information from the specified node. 
     *  
     * @param fqn Full Qualified Name for the specified node 
     * @param key The key of the node information 
     */  
    public void removeNodeInfo(Fqn<String> fqn, String key) {  
        cache.remove(fqn, key);  
    }  
}

  下面是一個測試案例:

package com.javaeye.terrencexu.jbosscache;  

import java.io.File;  

import org.jboss.cache.Fqn;  

public class Main {  

    public static void main(String[] args) {  
        FileCache<String> fileCache = new FileCache<String>(new File("d:\\tmp"));  

        Fqn<String> jimmyFqn = Fqn.fromString("/com/manager/jimmy");  
        Fqn<String> hansonFqn = Fqn.fromString("/com/developer/hanson");  

        fileCache.addNode(jimmyFqn);  
        fileCache.addNode(hansonFqn);  

        fileCache.addNodeInfo(jimmyFqn, "en-name", "Jimmy Zhang");  
        fileCache.addNodeInfo(jimmyFqn, "zh-name", "Zhang Ji");  
        fileCache.addNodeInfo(hansonFqn, "en-name", "Hanson Yang");  
        fileCache.addNodeInfo(hansonFqn, "zh-name", "Yang Kuo");  

        String enName = fileCache.getNodeInfo(hansonFqn, "en-name");  
        System.out.println(enName);  
    }  

}

  運行結果如下:

- JBossCache MBeans were successfully registered to the platform mbean server.  
- JBoss Cache version: JBossCache 'Malagueta' 3.2.5.GA  
Hanson Yang

  生成的緩存文件目錄結構如下:

D:/tmp/com.fdb/manage.fdb/jimmy.fdb/data.dat
D:/tmp/com.fdb/developer.fdb/hanson.fdb/data.dat

  總結

  JBoss Cache還有更多的用法,如果你的系統遇到數據庫瓶頸問題,可以考慮使用JBoss Cache來解決。

 

5、Voldemort – 基於鍵-值(key-value)的緩存框架

  Voldemort是一款基於Java開發的分布式鍵-值緩存系統,像JBoss Cache一樣,Voldemort同樣支持多台服務器之間的緩存同步,以增強系統的可靠性和讀取性能。

Voldemort邏輯架構圖

Voldemort物理架構圖

  Voldemort的配置方式

  集群配置文件:

<cluster>
    <!-- The name is just to help users identify this cluster from the gui -->
    <name>mycluster</name>
    <zone>
      <zone-id>0</zone-id>
      <proximity-list>1</proximity-list>
    <zone>
    <zone>
      <zone-id>1</zone-id>
      <proximity-list>0</proximity-list>
    <zone>
    <server>
      <!-- The node id is a unique, sequential id beginning with 0 that identifies each server in the cluster-->
      <id>0</id>
      <host>vldmt1.prod.linkedin.com</host>
      <http-port>8081</http-port>
      <socket-port>6666</socket-port>
      <admin-port>6667</admin-port>
      <!-- A list of data partitions assigned to this server -->
      <partitions>0,1,2,3</partitions>
      <zone-id>0</zone-id>
    </server>
    <server>
      <id>1</id>
      <host>vldmt2.prod.linkedin.com</host>
      <http-port>8081</http-port>
      <socket-port>6666</socket-port>
      <admin-port>6667</admin-port>
      <partitions>4,5,6,7</partitions>
      <zone-id>1</zone-id>
    </server>
  </cluster>

  數據存儲方式配置文件:

<stores>
      <store>
	  <name>test</name>
	  <replication-factor>2</replication-factor>
	  <preferred-reads>2</preferred-reads>
	  <required-reads>1</required-reads>
	  <preferred-writes>2</preferred-writes>
	  <required-writes>1</required-writes>
	  <persistence>bdb</persistence>
	  <routing>client</routing>
	  <routing-strategy>consistent-routing</routing-strategy>
	  <key-serializer>
	      <type>string</type>
	      <schema-info>utf8</schema-info>
	  </key-serializer>
	  <value-serializer>
	      <type>json</type>
	      <schema-info version="1">[{"id":"int32", "name":"string"}]</schema-info>
	      <compression>
		  <type>gzip<type>
	      </compression>
	  </value-serializer>
      </store>
  </stores>

  Voldemort的使用示例

value = store.get(key)
store.put(key, value)
store.delete(key)

  總結

  Voldemort是分布式緩存系統,因此可以應用在中大型的軟件項目中,性能方面也都還不錯。

  1. 上一頁:
  2. 下一頁:
Copyright © 程式師世界 All Rights Reserved