在開發中大型Java軟件項目時,很多Java架構師都會遇到數據庫讀寫瓶頸,如果你在系統架構時並沒有將緩存策略考慮進去,或者並沒有選擇更優的 緩存策略,那麼到時候重構起來將會是一個噩夢。本文主要是分享了5個常用的Java分布式緩存框架,這些緩存框架支持多台服務器的緩存讀寫功能,可以讓你 的緩存系統更容易擴展。
Ehcache是一個Java實現的開源分布式緩存框架,EhCache 可以有效地減輕數據庫的負載,可以讓數據保存在不同服務器的內存中,在需要數據的時候可以快速存取。同時EhCache 擴展非常簡單,官方提供的Cache配置方式有好幾種。你可以通過聲明配置、在xml中配置、在程序裡配置或者調用構造方法時傳入不同的參數。
<ehcache> <diskStore path=”java.io.tmpdir”/> <defaultCache maxElementsInMemory=”10000″ eternal=”false” timeToIdleSeconds=”120″ timeToLiveSeconds=”120″ overflowToDisk=”true” maxElementsOnDisk=”10000000″ diskPersistent=”false” diskExpiryThreadIntervalSeconds=”120″ memoryStoreEvictionPolicy=”LRU” /> </ehcache>
總結
在同類的Java緩存框架中,Ehcache配置相對簡單,也比較容易上手,最大的優勢是它支持分布式緩存
Cacheonix同樣也是一個基於Java的分布式集群緩存系統,它同樣可以幫助你實現分布式緩存的部署。
官方網站:http://www.cacheonix.com/
Cacheonix的特點
Cacheonix的架構圖
<?xml version ="1.0"?> <cacheonix xmlns="http://www.cacheonix.com/schema/configuration" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.cacheonix.com/schema/configuration http://www.cacheonix.com/schema/cacheonix-config-2.0.xsd"> <server> <listener> <tcp port="8879" buffer="128k"/> </listener> <broadcast> <multicast multicastAddress="225.0.1.2" multicastPort="9998" multicastTTL="0"/> </broadcast> <partitionedCache name="customer.cache"> <store> <lru maxElements="10000" maxBytes="10mb"/> <expiration idleTime="120s"/> </store> </partitionedCache> <partitionedCache name="invoice.cache"> <store> <lru maxElements="10000" maxBytes="10mb"/> <expiration idleTime="120s"/> </store> </partitionedCache> <partitionedCache name="search.results.cache"> <store> <lru maxBytes="5mb"/> </store> </partitionedCache> </server> </cacheonix>
Cacheonix緩存的存取
從配置中獲取Cacheonix實例
/** * Tester for CacheManager. */ public final class CacheonixTest extends TestCase { private Cacheonix cacheonix; /** * Tests getting an instance of CacheManager using a default Cacheonix configuration. */ public void testGetInstance() { assertNotNull("Cacheonix created in setUp() method should not be null", cacheonix); } /** * Sets up the fixture. This method is called before a test is executed. * <p/> * Cacheonix receives the default configuration from a <code>cacheonix-config.xml</code> found in a class path or * using a file that name is defined by system parameter <code>cacheonix.config.xml<code>. */ protected void setUp() throws Exception { super.setUp(); // Get Cacheonix using a default Cacheonix configuration. The configuration // is stored in the conf/cacheonix-config.xml cacheonix = Cacheonix.getInstance(); } /** * Tears down the fixture. This method is called after a test is executed. */ protected void tearDown() throws Exception { // Cache manager has be be shutdown upon application exit. // Note that call to shutdown() here uses unregisterSingleton // set to true. This is necessary to support clean restart on setUp() cacheonix.shutdown(ShutdownMode.GRACEFUL_SHUTDOWN, true); cacheonix = null; super.tearDown(); } }
讀取緩存
Cacheonix cacheonix = Cacheonix.getInstance(); Cache<String, String> cache = cacheonix.getCache("my.cache"); String cachedValue = cache.get("my.key");
設置緩存
Cacheonix cacheonix = Cacheonix.getInstance(); Cache<String, String> cache = cacheonix.getCache("my.cache"); String replacedValue = cache.put("my.key", "my.value");
刪除緩存
Cacheonix cacheonix = Cacheonix.getInstance(); Cache<String, String> cache = cacheonix.getCache("my.cache"); String removedValue = cache.remove("my.key");
總結
Cacheonix作為一款開源的分布式緩存框架,可以滿足中型企業規模的系統架構,對提升系統性能有非常棒的作用。
ASimpleCache是一款基於Android的輕量級緩存框架,它只有一個Java文件,ASimpleCache基本可以緩存常用的Android對象,包括普通字符串、JSON對象、經過序列化的Java對象、字節數組等。
ACache mCache = ACache.get(this); mCache.put("test_key1", "test value"); mCache.put("test_key2", "test value", 10);//保存10秒,如果超過10秒去獲取這個key,將為null mCache.put("test_key3", "test value", 2 * ACache.TIME_DAY);//保存兩天,如果超過兩天去獲取這個key,將為null
獲取緩存數據:
ACache mCache = ACache.get(this); String value = mCache.getAsString("test_key1");
總結
ASimpleCache的作者是國人,代碼托管在Github上,也用過ASimpleCache的同學可以分享一下使用心得,為開源事業貢獻一份力量。
JBoss Cache是一款基於Java的事務處理緩存系統,它的目標是構建一個以Java框架為基礎的集群解決方案,可以是服務器應用,也可以是Java SE應用。
TreeCache tree = new TreeCache();
然後是讀進配置文件
PropertyConfigurator config = new PropertyConfigurator(); config.configure("配置文件.xml");
然後開始服務
Tree.startService();
因為Tree的結構是用NODE來Access的,TreeCache這裡就很簡單的用:
/level1/level2/node1 來表示兩級Tree下面的Node1。
現在我們添加幾個要Cache的對象。
Tree.put("/level1/level2/node1", "key1", "value1"); String[] array = { "1", "2", "3", "4" } Tree.put("/level3/array/", "myarray", array);
大家可以看到,TreeCache裡面可以存儲任何種類的對象,包括所有復雜對象。
讀取對象就很方便了,
String s = (String)Tree.get("/level1/level2/node1/", "key1");
value1就讀出來了。
同理:
String[] sarr = (String[]) Tree.get("/level3/array/","myarray");
System.out.println(sarr[1]) 會顯示2
最後停止服務:
Tree.stopService();
JBoss Cache的FileCacheLoader示例
首先創建一個FileCache類封裝JBoss Cache的相關操作,如下:
package com.javaeye.terrencexu.jbosscache; import java.io.File; import java.util.Map; import org.jboss.cache.Cache; import org.jboss.cache.DefaultCacheFactory; import org.jboss.cache.Fqn; import org.jboss.cache.Node; import org.jboss.cache.config.CacheLoaderConfig; import org.jboss.cache.config.Configuration; import org.jboss.cache.loader.FileCacheLoader; import org.jboss.cache.loader.FileCacheLoaderConfig; /** * <p> * This is demo to illustrate how to use the JBoss Cache to cache your * frequently accessed Java objects in order to dramatically improve * the performance of your applications. This makes it easy to remove * data access bottlenecks, such as connecting to a database. * </p> * <p> * As a rule of thumb, it is recommended that the FileCacheLoader not * be used in a highly concurrent, transactional or stressful environment, * ant its use is restricted to testing. * </p> * * @author TerrenceX * * @param <T> */ public class FileCache<T> { /** * The JBoss Cache, used to cache frequently accessed Java objects. */ private Cache<String, T> cache; /** * @constructor * @param fsCacheLoaderLocation The file system location to store the cache */ public FileCache(File fsCacheLoaderLocation) { cache = initCache(fsCacheLoaderLocation); } /** * Create a Cache and whose cache loader type is File Cache Loader * * @param fsCacheLoaderLocation The file position used to store the cache. * * @return Cache */ public Cache<String, T> initCache(File fsCacheLoaderLocation) { // initiate a FileCacheLoader instance FileCacheLoader fsCacheLoader = new FileCacheLoader(); // prepare the file cache loader configuration file for File Cache Loader FileCacheLoaderConfig fsCacheLoaderConfig = new FileCacheLoaderConfig(); fsCacheLoaderConfig.setLocation(fsCacheLoaderLocation.toString()); fsCacheLoaderConfig.setCacheLoader(fsCacheLoader); // set configuration to File Cache Loader fsCacheLoader.setConfig(fsCacheLoaderConfig); // prepare the configuration for Cache Configuration config = new Configuration(); config.setCacheLoaderConfig(new CacheLoaderConfig()); config.getCacheLoaderConfig().addIndividualCacheLoaderConfig(fsCacheLoaderConfig); // create a Cache through the default cache factory return new DefaultCacheFactory<String, T>().createCache(config); } /** * Add a new node into the tree-node hierarchy * * @param fqn Full Qualified Name for the new node * @return */ public Node<String, T> addNode(Fqn<String> fqn) { return cache.getRoot().addChild(fqn); } /** * Remove a specified node from the tree-node hierarchy * * @param fqn Full Qualified Name for the specified node */ public void removeNode(Fqn<String> fqn) { cache.removeNode(fqn); } /** * Add node information to the specified node. * * @param fqn Full Qualified Name for the specified node * @param key The key of the node information * @param value The value of the node information */ public void addNodeInfo(Fqn<String> fqn, String key, T value) { cache.put(fqn, key, value); } /** * Batch add node information to the specified node. * * @param fqn Full Qualified Name for the specified node * @param infos Node informations map */ public void addNodeInfos(Fqn<String> fqn, Map<String, T> infos) { cache.put(fqn, infos); } /** * Get node information from the specified node. * * @param fqn Full Qualified Name for the specified node * @param key The key of the node information * @return */ public T getNodeInfo(Fqn<String> fqn, String key) { return cache.get(fqn, key); } /** * Remove node information from the specified node. * * @param fqn Full Qualified Name for the specified node * @param key The key of the node information */ public void removeNodeInfo(Fqn<String> fqn, String key) { cache.remove(fqn, key); } }
下面是一個測試案例:
package com.javaeye.terrencexu.jbosscache; import java.io.File; import org.jboss.cache.Fqn; public class Main { public static void main(String[] args) { FileCache<String> fileCache = new FileCache<String>(new File("d:\\tmp")); Fqn<String> jimmyFqn = Fqn.fromString("/com/manager/jimmy"); Fqn<String> hansonFqn = Fqn.fromString("/com/developer/hanson"); fileCache.addNode(jimmyFqn); fileCache.addNode(hansonFqn); fileCache.addNodeInfo(jimmyFqn, "en-name", "Jimmy Zhang"); fileCache.addNodeInfo(jimmyFqn, "zh-name", "Zhang Ji"); fileCache.addNodeInfo(hansonFqn, "en-name", "Hanson Yang"); fileCache.addNodeInfo(hansonFqn, "zh-name", "Yang Kuo"); String enName = fileCache.getNodeInfo(hansonFqn, "en-name"); System.out.println(enName); } }
運行結果如下:
- JBossCache MBeans were successfully registered to the platform mbean server. - JBoss Cache version: JBossCache 'Malagueta' 3.2.5.GA Hanson Yang
生成的緩存文件目錄結構如下:
D:/tmp/com.fdb/manage.fdb/jimmy.fdb/data.dat D:/tmp/com.fdb/developer.fdb/hanson.fdb/data.dat
總結
JBoss Cache還有更多的用法,如果你的系統遇到數據庫瓶頸問題,可以考慮使用JBoss Cache來解決。
Voldemort是一款基於Java開發的分布式鍵-值緩存系統,像JBoss Cache一樣,Voldemort同樣支持多台服務器之間的緩存同步,以增強系統的可靠性和讀取性能。
Voldemort邏輯架構圖
Voldemort物理架構圖
Voldemort的配置方式
集群配置文件:
<cluster> <!-- The name is just to help users identify this cluster from the gui --> <name>mycluster</name> <zone> <zone-id>0</zone-id> <proximity-list>1</proximity-list> <zone> <zone> <zone-id>1</zone-id> <proximity-list>0</proximity-list> <zone> <server> <!-- The node id is a unique, sequential id beginning with 0 that identifies each server in the cluster--> <id>0</id> <host>vldmt1.prod.linkedin.com</host> <http-port>8081</http-port> <socket-port>6666</socket-port> <admin-port>6667</admin-port> <!-- A list of data partitions assigned to this server --> <partitions>0,1,2,3</partitions> <zone-id>0</zone-id> </server> <server> <id>1</id> <host>vldmt2.prod.linkedin.com</host> <http-port>8081</http-port> <socket-port>6666</socket-port> <admin-port>6667</admin-port> <partitions>4,5,6,7</partitions> <zone-id>1</zone-id> </server> </cluster>
數據存儲方式配置文件:
<stores> <store> <name>test</name> <replication-factor>2</replication-factor> <preferred-reads>2</preferred-reads> <required-reads>1</required-reads> <preferred-writes>2</preferred-writes> <required-writes>1</required-writes> <persistence>bdb</persistence> <routing>client</routing> <routing-strategy>consistent-routing</routing-strategy> <key-serializer> <type>string</type> <schema-info>utf8</schema-info> </key-serializer> <value-serializer> <type>json</type> <schema-info version="1">[{"id":"int32", "name":"string"}]</schema-info> <compression> <type>gzip<type> </compression> </value-serializer> </store> </stores>
Voldemort的使用示例
value = store.get(key) store.put(key, value) store.delete(key)
總結
Voldemort是分布式緩存系統,因此可以應用在中大型的軟件項目中,性能方面也都還不錯。