程序師世界是廣大編程愛好者互助、分享、學習的平台,程序師世界有你更精彩!
首頁
編程語言
C語言|JAVA編程
Python編程
網頁編程
ASP編程|PHP編程
JSP編程
數據庫知識
MYSQL數據庫|SqlServer數據庫
Oracle數據庫|DB2數據庫
 程式師世界 >> 編程語言 >> 網頁編程 >> PHP編程 >> 關於PHP編程 >> php-perl哈希算法實現

php-perl哈希算法實現

編輯:關於PHP編程

     php-perl哈希實現算法–DJBX33A(Daniel J. Bernstein, Times 33 with Addition)APR哈希默認算法

     代碼如下: APR_DECLARE_NONSTD(unsigned int) apr_hashfunc_default(const char *char_key,                                                       apr_ssize_t *klen) {     unsigned int hash = 0;     const unsigned char *key = (const unsigned char *)char_key;     const unsigned char *p;     apr_ssize_t i;       /*      * This is the popular `times 33' hash algorithm which is used by      * perl and also appears in Berkeley DB. This is one of the best      * known hash functions for strings because it is both computed      * very fast and distributes very well.      *      * The originator may be Dan Bernstein but the code in Berkeley DB      * cites Chris Torek as the source. The best citation I have found      * is "Chris Torek, Hash function for text in C, Usenet message      * <[email protected]> in comp.lang.c , October, 1990." in Rich      * Salz's USENIX 1992 paper about INN which can be found at      * .      *      * The magic of number 33, i.e. why it works better than many other      * constants, prime or not, has never been adequately explained by      * anyone. So I try an explanation: if one experimentally tests all      * multipliers between 1 and 256 (as I did while writing a low-level      * data structure library some time ago) one detects that even      * numbers are not useable at all. The remaining 128 odd numbers      * (except for the number 1) work more or less all equally well.      * They all distribute in an acceptable way and this way fill a hash      * table with an average percent of approx. 86%.      *      * If one compares the chi^2 values of the variants (see      * Bob Jenkins ``Hashing Frequently Asked Questions'' at      * http://burtleburtle.net/bob/hash/hashfaq.html for a description      * of chi^2), the number 33 not even has the best value. But the      * number 33 and a few other equally good numbers like 17, 31, 63,      * 127 and 129 have nevertheless a great advantage to the remaining      * numbers in the large set of possible multipliers: their multiply      * operation can be replaced by a faster operation based on just one      * shift plus either a single addition or subtraction operation. And      * because a hash function has to both distribute good _and_ has to      * be very fast to compute, those few numbers should be preferred.      *      *                  -- Ralf S. Engelschall       */       if (*klen == APR_HASH_KEY_STRING) {         for (p = key; *p; p++) {             hash = hash * 33 + *p;         }         *klen = p - key;     }     else {         for (p = key, i = *klen; i; i--, p++) {             hash = hash * 33 + *p;         }     }     return hash; }     對函數注釋部分的翻譯: 這是很出名的times33哈希算法,此算法被perl語言采用並在Berkeley DB中出現.它是已知的最好的哈希算法之一,在處理以字符串為鍵值的哈希時,有著極快的計算效率和很好哈希分布.最早提出這個算法的是Dan Bernstein,但是源代碼確實由Clris Torek在Berkeley DB出實作的.我找到的最確切的引文中這樣說”Chris Torek,C語言文本哈希函數,Usenet消息<<[email protected]> in comp.lang.c ,1990年十月.”在Rich Salz於1992年在USENIX報上發表的討論INN的文章中提到.這篇文章可以在上找到. 33這個奇妙的數字,為什麼它能夠比其他數值效果更好呢?無論重要與否,卻從來沒有人能夠充分說明其中的原因.因此在這裡,我來試著解釋一下.如果某人試著測試1到256之間的每個數字(就像我前段時間寫的一個底層數據結構庫那樣),他會發現,沒有哪一個數字的表現是特別突出的.其中的128個奇數(1除外)的表現都差不多,都能夠達到一個能接受的哈希分布,平均分布率大概是86%. 如果比較這128個奇數中的方差值(gibbon:統計術語,表示隨機變量與它的數學期望之間的平均偏離程度)的話(見Bob Jenkins的<哈希常見疑問>http://burtleburtle.net/bob/hash/hashfaq.html,中對平方差的描述),數字33並不是表現最好的一個.(gibbon:這裡按照我的理解,照常理,應該是方差越小穩定,但是由於這裡不清楚作者方差的計算公式,以及在哈希離散表,是不是離散度越大越好,所以不得而知這裡的表現好是指方差值大還是指方差值小),但是數字33以及其他一些同樣好的數字比如 17,31,63,127和129對於其他剩下的數字,在面對大量的哈希運算時,仍然有一個大大的優勢,就是這些數字能夠將乘法用位運算配合加減法來替換,這樣的運算速度會提高.畢竟一個好的哈希算法要求既有好的分布,也要有高的計算速度,能同時達到這兩點的數字很少.    
    1. 上一頁:
    2. 下一頁:
    Copyright © 程式師世界 All Rights Reserved