來使用,事務造成的影響不會成為一個太大的問題;但假設有成千上萬的用戶同時訪問一個數據庫系統,例如訪問一個電子商務網站,就會產生比較嚴重的響
應延遲。
其實,有些情況下我們可以通過鎖定表的方法來獲得更好的性能。下面的例子就用鎖定表的方法來完成前面一個例子中事務的功能。
LOCK TABLE inventory WRITE
SELECT Quantity FROM inventory
WHEREItem='book';
...
UPDATE inventory SET Quantity=11
WHEREItem='book';
UNLOCK TABLES
這裡,我們用一個 SELECT 語句取出初始數據,通過一些計算,用 UPDATE 語句將新值更新到表中。包含有 WRITE 關鍵字的
LOCK TABLE 語句可以保證在 UNLOCK TABLES 命令被執行之前,不會有其它的訪問來對 inventory 進行插入、更新或者
刪除的操作。
6、使用外鍵
鎖定表的方法可以維護數據的完整性,但是它卻不能保證數據的關聯性。這個時候我們就可以使用外鍵。例如,外鍵可以保證每一條銷售記錄都指向某一個存
在的客戶。在這裡,外鍵可以把customerinfo 表中的CustomerID映射到salesinfo表中CustomerID,任何一條沒有
合法CustomerID的記錄都不會被更新或插入到salesinfo中。
CREATE TABLE customerinfo
(
CustomerID INT NOT NULL ,
PRIMARY KEY ( CustomerID )
) TYPE = INNODB;
CREATE TABLE salesinfo
(
SalesID INT NOT NULL,
CustomerID INT NOT NULL,
PRIMARY KEY(CustomerID, SalesID),
FOREIGN KEY (CustomerID) REFERENCES customerinfo
(CustomerID) ON DELETECASCADE
) TYPE = INNODB;
注意例子中的參數“ON DELETE CASCADE”。該參數保證當 customerinfo 表中的一條客戶記錄被刪除的時候,
salesinfo 表中所有與該客戶相關的記錄也會被自動刪除。如果要在 MySQL 中使用外鍵,一定要記住在創建表的時候將表的類型定義為事務安
全表 InnoDB類型。該類型不是 MySQL 表的默認類型。定義的方法是在 CREATE TABLE 語句中加上 TYPE=INNODB。如
例中所示。
7、使用索引
索引是提高數據庫性能的常用方法,它可以令數據庫服務器以比沒有索引快得多的速度檢索特定的行,尤其是在查詢語句當中包含有MAX(), MIN
()和ORDERBY這些命令的時候,性能提高更為明顯。那該對哪些字段建立索引呢?一般說來,索引應建立在那些將用於JOIN, WHERE判斷和
ORDER BY排序的字段上。盡量不要對數據庫中某個含有大量重復的值的字段建立索引。對於一個ENUM類型的字段來說,出現大量重復值是很有可能的
情況,例如customerinfo中的“province”.. 字段,在這樣的字段上建立索引將不會有什麼幫助;相反,還有可能降低數據庫的性能。
我們在創建表的時候可以同時創建合適的索引,也可以使用ALTER TABLE或CREATE INDEX在以後創建索引。此外,MySQL
從版本3.23.23開始支持全文索引和搜索。全文索引在MySQL 中是一個FULLTEXT類型索引,但僅能用於MyISAM 類型的表。對於
一個大的數據庫,將數據裝載到一個沒有FULLTEXT索引的表中,然後再使用ALTER TABLE或CREATE INDEX創建索引,將是非常快
的。但如果將數據裝載到一個已經有FULLTEXT索引的表中,執行過程將會非常慢。
8、優化的查詢語句
絕大多數情況下,使用索引可以提高查詢的速度,但如果SQL語句使用不恰當的話,索引將無法發揮它應有的作用。下面是應該注意的幾個方面。首先,最
好是在相同類型的字段間進行比較的操作。在MySQL 3.23版之前,這甚至是一個必須的條件。例如不能將一個建有索引的INT字段和BIGINT字
段進行比較;但是作為特殊的情況,在CHAR類型的字段和VARCHAR類型字段的字段大小相同的時候,可以將它們進行比較。其次,在建有索引的字段上
盡量不要使用函數進行操作。
例如,在一個DATE類型的字段上使用YEAE()函數時,將會使索引不能發揮應有的作用。所以,下面的兩個查詢雖然返回的結果一樣,但後者要比前
者快得多。
SELECT * FROM order WHERE YEAR(OrderDate)<2001;
SELECT * FROM order WHERE OrderDate<"2001-01-01";
同樣的情形也會發生在對數值型字段進行計算的時候:
SELECT * FROM inventory WHERE Amount/7<24;
SELECT * FROM inventory WHERE Amount<24*7;
上面的兩個查詢也是返回相同的結果,但後面的查詢將比前面的一個快很多。第三,在搜索字符型字段時,我們有時會使用 LIKE 關鍵字和通配符,這
種做法雖然簡單,但卻也是以犧牲系統性能為代價的。例如下面的查詢將會比較表中的每一條記錄。
SELECT * FROM books
WHERE name like "MySQL%"