當一張的數據達到幾百萬時,你查詢一次所花的時間會變多,如果有聯合查詢的話,我想有可能會死在那兒了。分表的目的就在於此,減小數據庫的負擔,縮短查詢時間。
根據個人經驗,MySQL執行一個sql的過程如下:
1,接收到sql;2,把sql放到排隊隊列中 ;3,執行sql;4,返回執行結果。在這個執行過程中最花時間在什麼地方呢?第一,是排隊等待的時間,第二,sql的執行時間。其實這二個是一回事,等待的同時,肯定有sql在執行。所以我們要縮短sql的執行時間。
mysql中有一種機制是表鎖定和行鎖定,為什麼要出現這種機制,是為了保證數據的完整性,我舉個例子來說吧,如果有二個sql都要修改同一張表的同一條數據,這個時候怎麼辦呢,是不是二個sql都可以同時修改這條數據呢?很顯然MySQL對這種情況的處理是,一種是表鎖定(myisam存儲引擎),一個是行鎖定(innodb存儲引擎)。表鎖定表示你們都不能對這張表進行操作,必須等我對表操作完才行。行鎖定也一樣,別的sql必須等我對這條數據操作完了,才能對這條數據進行操作。如果數據太多,一次執行的時間太長,等待的時間就越長,這也是我們為什麼要分表的原因。
二,分表
1,做mysql集群,例如:利用mysql cluster ,mysql proxy,MySQL replication,drdb等等
有人會問MySQL集群,根分表有什麼關系嗎?雖然它不是實際意義上的分表,但是它啟到了分表的作用,做集群的意義是什麼呢?為一個數據庫減輕負擔,說白了就是減少sql排隊隊列中的sql的數量,舉個例子:有10個sql請求,如果放在一個數據庫服務器的排隊隊列中,他要等很長時間,如果把這10個sql請求,分配到5個數據庫服務器的排隊隊列中,一個數據庫服務器的隊列中只有2個,這樣等待時間是不是大大的縮短了呢?這已經很明顯了。所以我把它列到了分表的范圍以內,我做過一些MySQL的集群:
Linux MySQL proxy 的安裝,配置,以及讀寫分離
MySQL replication 互為主從的安裝及配置,以及數據同步
優點:擴展性好,沒有多個分表後的復雜操作(PHP代碼)
缺點:單個表的數據量還是沒有變,一次操作所花的時間還是那麼多,硬件開銷大。
2,預先估計會出現大數據量並且訪問頻繁的表,將其分為若干個表
這種預估大差不差的,論壇裡面發表帖子的表,時間長了這張表肯定很大,幾十萬,幾百萬都有可能。 聊天室裡面信息表,幾十個人在一起一聊一個晚上,時間長了,這張表的數據肯定很大。像這樣的情況很多。所以這種能預估出來的大數據量表,我們就事先分出個N個表,這個N是多少,根據實際情況而定。以聊天信息表為例:
我事先建100個這樣的表,message_00,message_01,message_02……….message_98,message_99.然後根據用戶的ID來判斷這個用戶的聊天信息放到哪張表裡面,你可以用hash的方式來獲得,可以用求余的方式來獲得,方法很多,各人想各人的吧。下面用hash的方法來獲得表名:
查看復制打印?<?PHP function get_hash_table($table,$userid) { $str = crc32($userid); if($str<0){ $hash = "0".substr(abs($str), 0, 1); }else{ $hash = substr($str, 0, 2); } return $table."_".$hash; } echo get_hash_table('message','user18991'); //結果為message_10 echo get_hash_table('message','user34523'); //結果為message_13 ?>
說明一下,上面的這個方法,告訴我們user18991這個用戶的消息都記錄在message_10這張表裡,user34523這個用戶的消息都記錄在message_13這張表裡,讀取的時候,只要從各自的表中讀取就行了。
優點:避免一張表出現幾百萬條數據,縮短了一條sql的執行時間
缺點:當一種規則確定時,打破這條規則會很麻煩,上面的例子中我用的hash算法是crc32,如果我現在不想用這個算法了,改用md5後,會使同一個用戶的消息被存儲到不同的表中,這樣數據亂套了。擴展性很差。
3,利用merge存儲引擎來實現分表
我覺得這種方法比較適合,那些沒有事先考慮,而已經出現了得,數據查詢慢的情況。這個時候如果要把已有的大數據量表分開比較痛苦,最痛苦的事就是改代碼,因為程序裡面的sql語句已經寫好了,現在一張表要分成幾十張表,甚至上百張表,這樣sql語句是不是要重寫呢?舉個例子,我很喜歡舉子
MySQL>show engines;的時候你會發現mrg_myisam其實就是merge。
查看復制打印?mysql> CREATE TABLE IF NOT EXISTS `user1` ( -> `id` int(11) NOT NULL AUTO_INCREMENT, -> `name` varchar(50) DEFAULT NULL, -> `sex` int(1) NOT NULL DEFAULT '0', -> PRIMARY KEY (`id`) -> ) ENGINE=MyISAM DEFAULT CHARSET=utf8 AUTO_INCREMENT=1 ; Query OK, 0 rows affected (0.05 sec) mysql> CREATE TABLE IF NOT EXISTS `user2` ( -> `id` int(11) NOT NULL AUTO_INCREMENT, -> `name` varchar(50) DEFAULT NULL, -> `sex` int(1) NOT NULL DEFAULT '0', -> PRIMARY KEY (`id`) -> ) ENGINE=MyISAM DEFAULT CHARSET=utf8 AUTO_INCREMENT=1 ; Query OK, 0 rows affected (0.01 sec) mysql> INSERT INTO `user1` (`name`, `sex`) VALUES('張映', 0); Query OK, 1 row affected (0.00 sec) mysql> INSERT INTO `user2` (`name`, `sex`) VALUES('tank', 1); Query OK, 1 row affected (0.00 sec) mysql> CREATE TABLE IF NOT EXISTS `alluser` ( -> `id` int(11) NOT NULL AUTO_INCREMENT, -> `name` varchar(50) DEFAULT NULL, -> `sex` int(1) NOT NULL DEFAULT '0', -> INDEX(id) -> ) TYPE=MERGE UNION=(user1,user2) INSERT_METHOD=LAST AUTO_INCREMENT=1 ; Query OK, 0 rows affected, 1 warning (0.00 sec) mysql> select id,name,sex from alluser; +----+--------+-----+ | id | name | sex | +----+--------+-----+ | 1 | 張映 | 0 | | 1 | tank | 1 | +----+--------+-----+ 2 rows in set (0.00 sec) mysql> INSERT INTO `alluser` (`name`, `sex`) VALUES('tank2', 0); Query OK, 1 row affected (0.00 sec) MySQL> select id,name,sex from user2 -> ; +----+-------+-----+ | id | name | sex | +----+-------+-----+ | 1 | tank | 1 | | 2 | tank2 | 0 | +----+-------+-----+ 2 rows in set (0.00 sec)
從上面的操作中,我不知道你有沒有發現點什麼?假如我有一張用戶表user,有50W條數據,現在要拆成二張表user1和user2,每張表25W條數據,
INSERT INTO user1(user1.id,user1.name,user1.sex)SELECT (user.id,user.name,user.sex)FROM user where user.id <= 250000
INSERT INTO user2(user2.id,user2.name,user2.sex)SELECT (user.id,user.name,user.sex)FROM user where user.id > 250000
這樣我就成功的將一張user表,分成了二個表,這個時候有一個問題,代碼中的sql語句怎麼辦,以前是一張表,現在變成二張表了,代碼改動很大,這樣給程序員帶來了很大的工作量,有沒有好的辦法解決這一點呢?辦法是把以前的user表備份一下,然後刪除掉,上面的操作中我建立了一個alluser表,只把這個alluser表的表名改成user就行了。但是,不是所有的MySQL操作都能用的
a,如果你使用 alter table 來把 merge 表變為其它表類型,到底層表的映射就被丟失了。取而代之的,來自底層 myisam 表的行被復制到已更換的表中,該表隨後被指定新類型。
b,網上看到一些說replace不起作用,我試了一下可以起作用的。暈一個先
mysql> UPDATE alluser SET sex=REPLACE(sex, 0, 1) where id=2; Query OK, 1 row affected (0.00 sec) Rows matched: 1 Changed: 1 Warnings: 0 MySQL> select * from alluser; +----+--------+-----+ | id | name | sex | +----+--------+-----+ | 1 | 張映 | 0 | | 1 | tank | 1 | | 2 | tank2 | 1 | +----+--------+-----+ 3 rows in set (0.00 sec)
c,一個 merge 表不能在整個表上維持 unique 約束。當你執行一個 insert,數據進入第一個或者最後一個 myisam 表(取決於 insert_method 選項的值)。MySQL 確保唯一鍵值在那個 myisam 表裡保持唯一,但不是跨集合裡所有的表。
d,當你創建一個 merge 表之時,沒有檢查去確保底層表的存在以及有相同的機構。當 merge 表被使用之時,MySQL 檢查每個被映射的表的記錄長度是否相等,但這並不十分可靠。如果你從不相似的 myisam 表創建一個 merge 表,你非常有可能撞見奇怪的問題。
好困睡覺了,c和d在網上看到的,沒有測試,大家試一下吧。
優點:擴展性好,並且程序代碼改動的不是很大
缺點:這種方法的效果比第二種要差一點
三,總結一下
上面提到的三種方法,我實際做過二種,第一種和第二種。第三種沒有做過,所以說的細一點。哈哈。做什麼事都有一個度,超過個度就過變得很差,不能一味的做數據庫服務器集群,硬件是要花錢買的,也不要一味的分表,分出來1000表,MySQL的存儲歸根到底還以文件的形勢存在硬盤上面,一張表對應三個文件,1000個分表就是對應3000個文件,這樣檢索起來也會變的很慢。我的建議是
方法1和方法2結合的方式來進行分表
方法1和方法3結合的方式來進行分表
我的二個建議適合不同的情況,根據個人情況而定,我覺得會有很多人選擇方法1和方法3結合的方式