MySQL中關於not in和minus應用的優化。本站提示廣大學習愛好者:(MySQL中關於not in和minus應用的優化)文章只能為提供參考,不一定能成為您想要的結果。以下是MySQL中關於not in和minus應用的優化正文
優化前:
select count(t.id) from test t where t.status = 1 and t.id not in (select distinct a.app_id from test2 a where a.type = 1 and a.rule_id in (152, 153, 154)) 17:20:57 laojiu>@plan PLAN_TABLE_OUTPUT ————————————————————————————————————————- Plan hash value: 684502086 —————————————————————————————- | Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | —————————————————————————————- | 0 | SELECT STATEMENT | | 1 | 18 | 176K (2)| 00:35:23 | | 1 | SORT AGGREGATE | | 1 | 18 | | | |* 2 | FILTER | | | | | | |* 3 | TABLE ACCESS FULL| test | 1141 | 20538 | 845 (2)| 00:00:11 | |* 4 | TABLE ACCESS FULL| test2 | 1 | 12 | 309 (2)| 00:00:04 | —————————————————————————————- Predicate Information (identified by operation id): ————————————————— 2 – filter( NOT EXISTS (SELECT /*+ */ 0 FROM “test2″ “A” WHERE “A”.”type”=1 AND (“A”.”RULE_ID”=152 OR “A”.”RULE_ID”=153 OR “A”.”RULE_ID”=154) AND LNNVL(“A”.”APP_ID”<>:B1))) 3 – filter(“T”.”status”=1) 4 – filter(“A”.”type”=1 AND (“A”.”RULE_ID”=152 OR “A”.”RULE_ID”=153 OR “A”.”RULE_ID”=154) AND LNNVL(“A”.”APP_ID”<>:B1)) Statistics ———————————————————- 0 recursive calls 0 db block gets 1762169 consistent gets 0 physical reads 0 redo size 519 bytes sent via SQL*Net to client 492 bytes received via SQL*Net from client 2 SQL*Net roundtrips to/from client 0 sorts (memory) 0 sorts (disk) 1 rows processed 21 rows selected.
優化後:
select count(*) from( select t.id from test t where t.status = 1 minus select distinct a.app_id from test2 a where a.type = 1 and a.rule_id in (152, 153, 154)) 17:23:33 laojiu>@plan PLAN_TABLE_OUTPUT ————————————————————————————————————————- Plan hash value: 631655686 ————————————————————————————————– | Id | Operation | Name | Rows | Bytes |TempSpc| Cost (%CPU)| Time | ————————————————————————————————– | 0 | SELECT STATEMENT | | 1 | | | 1501 (2)| 00:00:19 | | 1 | SORT AGGREGATE | | 1 | | | | | | 2 | VIEW | | 1141 | | | 1501 (2)| 00:00:19 | | 3 | MINUS | | | | | | | | 4 | SORT UNIQUE | | 1141 | 20538 | | 846 (2)| 00:00:11 | |* 5 | TABLE ACCESS FULL| test | 1141 | 20538 | | 845 (2)| 00:00:11 | | 6 | SORT UNIQUE | | 69527 | 814K| 3632K| 654 (2)| 00:00:08 | |* 7 | TABLE ACCESS FULL| test2 | 84140 | 986K| | 308 (2)| 00:00:04 | ————————————————————————————————– Predicate Information (identified by operation id): ————————————————— 5 – filter(“T”.”status”=1) 7 – filter(“A”.”type”=1 AND (“A”.”RULE_ID”=152 OR “A”.”RULE_ID”=153 OR “A”.”RULE_ID”=154)) 21 rows selected. Statistics ———————————————————- 1 recursive calls 0 db block gets 2240 consistent gets 0 physical reads 0 redo size 516 bytes sent via SQL*Net to client 492 bytes received via SQL*Net from client 2 SQL*Net roundtrips to/from client 2 sorts (memory) 0 sorts (disk) 1 rows processed
在優化sql的時刻,我們須要改變一下思緒,等價的改寫sql;
改寫後的sql因為邏輯讀獲得了天崩地裂翻天覆地的轉變,很快獲得成果。
第一條sql履行籌劃中有一個函數,LNNVL(“A”.”APP_ID”<>:B1),lnnvl(exp)
假如exp的成果是false或許是unknown,那末lnnvl前往true;
假如exp的成果是true,前往false.