程序師世界是廣大編程愛好者互助、分享、學習的平台,程序師世界有你更精彩!
首頁
編程語言
C語言|JAVA編程
Python編程
網頁編程
ASP編程|PHP編程
JSP編程
數據庫知識
MYSQL數據庫|SqlServer數據庫
Oracle數據庫|DB2數據庫
 程式師世界 >> 數據庫知識 >> Oracle數據庫 >> Oracle教程 >> Oracle開發之分析函數簡介Over用法,oracleover

Oracle開發之分析函數簡介Over用法,oracleover

編輯:Oracle教程

Oracle開發之分析函數簡介Over用法,oracleover


一、Oracle分析函數簡介:

在日常的生產環境中,我們接觸得比較多的是OLTP系統(即Online Transaction Process),這些系統的特點是具備實時要求,或者至少說對響應的時間多長有一定的要求;其次這些系統的業務邏輯一般比較復雜,可能需要經過多次的運算。比如我們經常接觸到的電子商城。

在這些系統之外,還有一種稱之為OLAP的系統(即Online Aanalyse Process),這些系統一般用於系統決策使用。通常和數據倉庫、數據分析、數據挖掘等概念聯系在一起。這些系統的特點是數據量大,對實時響應的要求不高或者根本不關注這方面的要求,以查詢、統計操作為主。

我們來看看下面的幾個典型例子:
①查找上一年度各個銷售區域排名前10的員工
②按區域查找上一年度訂單總額占區域訂單總額20%以上的客戶
③查找上一年度銷售最差的部門所在的區域
④查找上一年度銷售最好和最差的產品

我們看看上面的幾個例子就可以感覺到這幾個查詢和我們日常遇到的查詢有些不同,具體有:

①需要對同樣的數據進行不同級別的聚合操作
②需要在表內將多條數據和同一條數據進行多次的比較
③需要在排序完的結果集上進行額外的過濾操作

二、Oracle分析函數簡單實例:

下面我們通過一個實際的例子:按區域查找上一年度訂單總額占區域訂單總額20%以上的客戶,來看看分析函數的應用。

【1】測試環境:

復制代碼 代碼如下:SQL> desc orders_tmp;

 Name                           Null?    Type
 ----------------------- -------- ----------------
 CUST_NBR                    NOT NULL NUMBER(5)
 REGION_ID                   NOT NULL NUMBER(5)
 SALESPERSON_ID      NOT NULL NUMBER(5)
 YEAR                              NOT NULL NUMBER(4)
 MONTH                         NOT NULL NUMBER(2)
 TOT_ORDERS              NOT NULL NUMBER(7)
 TOT_SALES                 NOT NULL NUMBER(11,2)

【2】測試數據:
復制代碼 代碼如下:SQL> select * from orders_tmp;

  CUST_NBR  REGION_ID SALESPERSON_ID       YEAR      MONTH TOT_ORDERS  TOT_SALES
---------- ---------- -------------- ---------- ---------- ---------- ----------
        11          7             11                       2001          7          2      12204
         4          5              4                         2001         10         2      37802
         7          6              7                         2001          2          3       3750
        10          6              8                        2001          1          2      21691
        10          6              7                        2001          2          3      42624
        15          7             12                       2000          5          6         24
        12          7              9                        2000          6          2      50658
         1          5              2                         2000          3          2      44494
         1          5              1                         2000          9          2      74864
         2          5              4                         2000          3          2      35060
         2          5              4                         2000          4          4       6454
         2          5              1                         2000         10          4      35580
         4          5              4                         2000         12          2      39190

13 rows selected.

【3】測試語句:

復制代碼 代碼如下:SQL> select o.cust_nbr customer,
  o.region_id region,
  sum(o.tot_sales) cust_sales,
  sum(sum(o.tot_sales)) over(partition by o.region_id) region_sales
from orders_tmp o
where o.year = 2001
 group by o.region_id, o.cust_nbr;

  CUSTOMER     REGION CUST_SALES REGION_SALES
---------- ---------- ---------- ------------
         4              5      37802        37802
         7              6       3750         68065
        10             6      64315        68065
        11             7      12204        12204

三、分析函數OVER解析:

請注意上面的綠色高亮部分,group by的意圖很明顯:將數據按區域ID,客戶進行分組,那麼Over這一部分有什麼用呢?假如我們只需要統計每個區域每個客戶的訂單總額,那麼我們只需要group by o.region_id,o.cust_nbr就夠了。但我們還想在每一行顯示該客戶所在區域的訂單總額,這一點和前面的不同:需要在前面分組的基礎上按區域累加。很顯然group by和sum是無法做到這一點的(因為聚集操作的級別不一樣,前者是對一個客戶,後者是對一批客戶)。

這就是over函數的作用了!它的作用是告訴SQL引擎:按區域對數據進行分區,然後累積每個區域每個客戶的訂單總額(sum(sum(o.tot_sales)))。

現在我們已經知道2001年度每個客戶及其對應區域的訂單總額,那麼下面就是篩選那些個人訂單總額占到區域訂單總額20%以上的大客戶了

復制代碼 代碼如下:SQL> select *
from (select o.cust_nbr customer,
     o.region_id region,
     sum(o.tot_sales) cust_sales,
     sum(sum(o.tot_sales)) over(partition by o.region_id) region_sales
   from orders_tmp o
   where o.year = 2001
   group by o.region_id, o.cust_nbr) all_sales
 where all_sales.cust_sales > all_sales.region_sales * 0.2;

  CUSTOMER     REGION CUST_SALES REGION_SALES
---------- ---------- ---------- ------------
         4          5      37802        37802
        10          6      64315        68065
        11          7      12204        12204

SQL>

現在我們已經知道這些大客戶是誰了!哦,不過這還不夠,如果我們想要知道每個大客戶所占的訂單比例呢?看看下面的SQL語句,只需要一個簡單的Round函數就搞定了。

復制代碼 代碼如下:SQL> select all_sales.*,
  100 * round(cust_sales / region_sales, 2) || '%' Percent
from (select o.cust_nbr customer,
   o.region_id region,
   sum(o.tot_sales) cust_sales,
   sum(sum(o.tot_sales)) over(partition by o.region_id) region_sales
  from orders_tmp o
  where o.year = 2001
  group by o.region_id, o.cust_nbr) all_sales
where all_sales.cust_sales > all_sales.region_sales * 0.2;

  CUSTOMER     REGION CUST_SALES REGION_SALES PERCENT
---------- ---------- ---------- ------------ ----------------------------------------
         4            5                  37802        37802    100%
        10           6                  64315        68065      94%
        11           7                  12204        12204    100%

SQL>

總結:

①Over函數指明在那些字段上做分析,其內跟Partition by表示對數據進行分組。注意Partition by可以有多個字段。

②Over函數可以和其它聚集函數、分析函數搭配,起到不同的作用。例如這裡的SUM,還有諸如Rank,Dense_rank等。

  1. 上一頁:
  2. 下一頁:
Copyright © 程式師世界 All Rights Reserved